PACES MILL FLOOD RISK REDUCTION

DRAFT PRELIMINARY ENGINEERING REPORT

PREPARED FOR:

CITY OF AUSTIN WATERSHED PROTECTION WATERSHED ENGINEERING DIVISION 505 BARTON SPRINGS ROAD AUSTIN, TX 78704

PREPARED BY

APRIL 2023

PACES MILL FLOOD RISK REDUCTION DRAFT PRELIMINARY ENGINEERING REPORT

Prepared For:

City of Austin Watershed Protection Watershed Engineering Division 505 Barton Springs Road #11 Austin, TX 78704

Prepared by:

K Friese + Associates 1120 S Capital of Texas Highway CityView 2, Suite 100 Austin, Texas 78746 Firm No: F-6535

This document is released for the purpose of interim review under the authority of Alexis Woffenden, P.E. #117162 on April 7, 2023 and is not to be used for other purposes.

April 2023

TABLE OF CONTENTS

1	GLOS	SSARY AND ACRONYMS	1
2	EXEC	CUTIVE SUMMARY	2
3	BAC	KGROUND	2
	3.1	PROJECT CONTEXT	2
	3.2	PROJECT APPROACH	3
	3.2.1	1 Data Collection	3
	3.2.2	2 Hydrologic Modeling	3
	3.2.3	3 Hydraulic Modeling	4
	3.2.3	3.1 Thaxton Road Flood Improvements	4
	3.2.3	3.2 Hydraulic Model Creation and Calibration	4
	3.2.3	3.3 Primary Analysis	4
	3.2.3	3.4 Secondary Analysis	4
	3.2.4	Final Alternative Selection and Preliminary Plan Development	4
4	DRAI	INAGE POLICY AND DESIGN CRITERIA	5
_	DAT		6
5	DAT	A COLLECTION	6
	5.1	FEMA	6
	5.2	HYDROLOGIC DATA	6
		HYDRAULIC DATA	
		ENVIRONMENTAL DATA	
6	EXIS	TING HYDROLOGIC MODEL DEVELOPMENT METHODOLOGY	7
	6.1	METEOROLOGY	7
		BASIN DELINEATION	
	6.3	BASIN LOSS PARAMETERS	8
	6.4	REACH ROUTING / ELEMENT CONFIGURATION	9
	6.5	RESERVOIR ROUTING	10
	6.5.1	1 Vertex Pond Elevation Storage	10
	6.5.2	2 Vertex Pond Storage Discharge	11
	6.6	RECORD EVENT RECREATION	12
		RAINFALL GAUGES / METEOROLOGY	
		BASIN DELINEATION	
		SENSITIVITY TEST	
7	EXIS	TING HYDRAULIC MODEL METHODOLOGY	16
	7.1	MODEL TERRAIN	16
	7.1.1		
	7.2	2D BOUNDARY CONDITIONS	17
	7.2.1	1 Internal Boundary Conditions	18
	7.2.2	2 External Boundary Conditions	19
	7.3	MODEL CALIBRATION AND ROUGHNESS	20
	7.3.1	1 Delineation of Roughness Boundaries	20
	7.3.2	2 Calibration Observations	20
	7.3.3	3 Calibration Results	20

8	FLO	OD RISK REDUCTION ANALYSIS
ξ	3.1	THAXTON ROAD IMPROVEMENTS
	8.1.1	L Hydrologic Analysis
	8.1.2	2 Existing Hydraulic Performance
	8.1.3	8 Proposed Hydraulic Performance
	8.1.4	Engineer's Opinion of Probable Cost (OPC)
	8.1.5	5 Project Impacts
8	3.2	PRIMARY ANALYSIS
	8.2.1	Alternatives
	8.2.2	2 Matrix Results
	8.2.3	3 Recommended Alternatives
ξ	3.3	SECONDARY ANALYSIS
	8.3.1	L Introduction40
	8.3.2	2 Refinements to Hydraulic Alternatives40
	8.3.3	
	8.3.4	1D Hydraulic Model Results
	8.3.5	5 Hydrologic Model Development44
	8.3.6	5 Hydrologic Model Results44
	8.3.7	Paces Mill Reach Results + Conclusions45
	8.3.8	8 Project Mitigation Options45
9	SCH	EMATIC DESIGN OF HYBRID OPTION
ç	9.1	PERMITTING
ç	9.2	COST ESTIMATES
ç	9.3	CONSTRUCTABILITY47
g	9.4	MAINTENANCE REQUIREMENTS48
g	9.5	ENVIRONMENTAL IMPACT

LIST OF FIGURES

Figure 1. Yarrabee Bend South Neighborhood Location Map	3
Figure 2. Paces Mill Subbasin Boundaries (shown in blue) and Rainviex Grid (shown in red)	8
Figure 3. Vertex Pond Location Map	10
Figure 4. Elevation-Discharge Time Series for Vertex Pond	11
Figure 5. May 26 th , 2016 Radar Rainfall Time Series	13
Figure 6. October 30 th , 2015 Radar Rainfall Time Series	13
Figure 7. Survey Limits	16
Figure 8. Hydraulic 2D Model Boundary Conditions	18
Figure 9. Extensive Vegetation within the Channel and along its Overbank (Paces Mill Tributary)	23
Figure 10. Extensive Vegetation within the Channel and along its Overbank (Paces Mill Tributary)	24
Figure 11. Extensive Vegetation within the Channel and along its Overbank (Paces Mill Tributary)	25
Figure 12. Location Map	27
Figure 13. 1D Hydraulic Model Storage Results	43
Figure 14. Hydrologic Model Relationships	44
Figure 15. Hydrologic Flow Change Impacts	45

LIST OF TABLES

Table 1- Depth-Duration-Frequency values	7
Table 2. Areas of Updated and Effective Paces Mill Subbasins	8
Table 3. Curve Numbers and Percent Impervious for Existing and Ultimate Conditions	9
Table 4. Reach RLOCR350A Storage-Discharge Rating Curves for Existing and Improved Thaxton Road	9
Table 5. Vertex Pond Rating Curve	.10
Table 6. Storage-Discharge Values for Vertex Pond	
Table 7. Subareas for Each Subbasin Subcomponent	.14
Table 8. Results of Paces Mill Basin Model Sensitivity Test for the 100-year Meteorological Event	. 15
Table 9. Frequencies for Coincidental Occurrence taken from Table 7-3 of HEC-22.	. 19
Table 10. Calibration Roughness Values	.21
Table 11. Calibration Results of the Recorded Water Surface Elevation for October 2015 Event	.21
Table 12. Calibration Results of the Recorded Water Surface Elevation for May 2016 Event	. 22
Table 13. Ultimate Design Flows at Thaxton Road	
Table 14: Existing Conditions Hydraulic Results	
Table 15. 2-Year Design Hydraulic Results	
Table 16. 10-Year Design Hydraulic Results	
Table 17. 25-Year Design Hydraulic Results	
Table 18. 100-Year Design Hydraulic Results	
Table 19. Paired Data Comparison from Thaxton Road Crossing Removal	
Table 20. Flow Increase from Storage Loss	.32
Table 21. HEC-HMS Models and Simulations	
Table 22. Primary Analysis Alternatives	. 34
Table 23. Primary Analysis Recommended Alternatives	. 39

APPENDICES

Appendix A: Thaxton Road Improvement Schematics Appendix B: Thaxton Road Engineer's Opinion of Probable Cost (OPC) Appendix C: Thaxton Road Hydrologic Flow Results Appendix D: Primary Analysis Proposed Design Schematics Appendix E: Primary Analysis Inundation Exhibits Appendix F: Primary Analysis Engineer's Opinion of Probable Cost (OPC) Appendix G: Primary Analysis Primary Analysis Evaluation Rubric Appendix H: Primary Analysis Primary Analysis Matrix Results Appendix I: Secondary Analysis Proposed Design Schematics Appendix J: Secondary Analysis Inundation and Velocity Change Exhibits Appendix K: Secondary Analysis Hydraulic Output Appendix L: Secondary Analysis Hydrologic Output Appendix M: Secondary Analysis Engineer's Opinion of Costs Appendix N: Secondary Analysis Mitigation Easement Exhibits Appendix O: Schematic Design Engineer's Opinion of Construction Cost Appendix P: Schematic Design of 100-yr Hybid Channel Improvements

1 GLOSSARY AND ACRONYMS

- COA City of Austin
- DCM Drainage Criteria Manual
- ECM Environmental Criteria Manual
- FEMA Federal Emergency Management Agency
- FRR Flood Risk Reduction
- HWM High Water Mark
- KFA K Friese + Associates
- LDC- Land Development Code
- LOS- Level of Service
- MIPT- Mission Integration for Watershed Protection Department Capital Projects
- NFIP National Flood Insurance Program
- OHWM Ordinary High Water Mark
- OPC Opinion of Probable Cost
- PER- Preliminary Engineering Report
- ROW Right of Way
- **TNRIS Texas Natural Resources Information System**
- WOTUS Waters of the United States
- WPD Watershed Protection Department
- WSEL Water Surface Elevation

2 EXECUTIVE SUMMARY

This PER outlines the study of flood risk reduction for the Paces Mill Tributary of Onion Creek adjacent to the Yarrabee Bend South Neighborhood. The study included creating, analyzing, and refining potential flood reduction alternatives. The PER includes the schematic design of the final recommended alternative.

The project includes updates to the effective hydrologic model to include current stormwater controls, simulations of record events in October 2015 and May 2016 as well as accounting for potential improvement at Thaxton Road. The project produced new calibrated 2D hydraulic models of the reach and proposed improvement alternatives as well as revisions to regulatory 1D simulations that align results with those produced by calibrated scenarios.

10 design alternatives and 3 buyout alternatives were analyzed in the primary analysis phase of the project. The projects were rated and ranked using a scoring matrix developed by the Watershed Protection Department (WPD) and K Friese & Associates (KFA). Of these alternatives, three physical design alternatives were carried into a secondary analysis phase. The three alternatives analyzed in the secondary analysis phase are the 100-Year Level of Service (LOS) Hybrid Channel, 100-Year LOS Engineered Channel, and the 10-Year LOS Natural Channel Alternatives. The three secondary alternatives were presented to the WPD Mission Integrated Program (MIP) for input on selection of a recommended alternative for preliminary design.

The recommended alternative for design is the 100-Year LOS Hybrid Channel. This report includes schematic drawings representative of flood risk reduction improvements in the reach, adverse impact analyses of the alternatives, and discussions of the design process tasks including anticipated permitting requirements.

3 Background 3.1 PROJECT CONTEXT

WPD is conducting this study in response to recorded flooding events on Thaxton Road and in Yarrabee Bend South Neighborhood in October 2015 and May 2016. These events each caused substantial flood damage to structures adjacent to the Paces Mill Tributary on Paces Mill Lane. This recent flooding has been a major driver in increasing the priority of the project to WPD.

The City of Austin tasked KFA with producing this PER with the primary objectives of developing an accurate assessment of possible flood risk to the residents adjacent to the tributary, and systematically developing a favorable solution to minimize that risk.

The Yarrabee Bend South Neighborhood abuts Paces Mill Tributary. The Paces Mill Tributary discharges directly into Onion Creek just north of the Yarrabee Bend South Neighborhood (Figure 1).

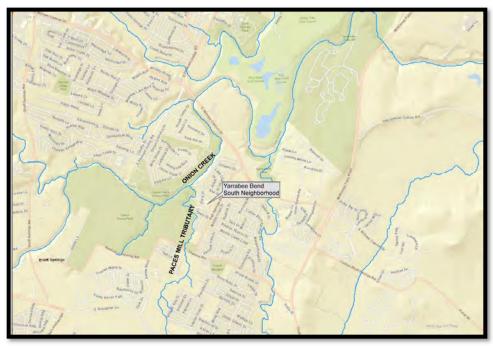


Figure 1. Yarrabee Bend South Neighborhood Location Map

3.2 PROJECT APPROACH

This preliminary engineering study was scoped to take meaningful, available data and supplement it wherever necessary to assess flood risk, progressively develop and refine a set of possible flood risk reduction solutions for the reach, and ultimately arrive at a single recommended alternative that could be completely developed in design and construction phases of the project. Each major component and its relevance is briefly discussed in this section, and in more detail in following sections.

3.2.1 Data Collection

Data collection for the project primarily included gathering regulatory models for the hydrology and hydraulics of the reach, highwater marks from historic storm events, and finished floor elevations of existing structures within the floodplain. Survey information was gathered primarily to update the hydrologic model with components constructed after the model's creation, and to provide high quality input for the hydraulic model of the reach. A geological reconnaissance was conducted of the existing channel to determine stability of the channel within the study area and to assist in the Erosion Hazard Zone analysis.

3.2.2 Hydrologic Modeling

The hydrologic model was updated primarily to include a regional pond built on Vertex Boulevard and to update to Atlas 14 meteorology. The RainVieux Radar Data from the October 2015 and May 2016 events were utilized to develop hydrologic models of these events. The runoff from these hydrologic models were utilized to calibrate the hydraulic models. Thaxton Road improvements were included in the proposed conditions model to assess the potential hydrologic impact of flood reduction improvements at Thaxton Road.

3.2.3 Hydraulic Modeling

Hydraulic modeling was performed for these major components:

3.2.3.1 Thaxton Road Flood Improvements

Thaxton Road is just upstream of the flooded homes on Paces Mill Lane and is a known low water crossing. While flood risk at Thaxton Road is of little effect on the flooding that occurs at Paces Mill Lane, development of improvement alternatives is desired by the city and is included in this report. Expected improvements to conveyance at Thaxton Road has the potential to marginally increase flows within the downstream reach and adjacent to the neighborhood. Potential hydrologic impacts due to improvements at Thaxton Road are accounted for in reach improvement alternatives.

3.2.3.2 Hydraulic Model Creation and Calibration

Flooding in the Paces Mill tributary is widespread, and in areas, there are numerous obstacles and irregularities. Because of this lack of uniformity, the reach and proposed improvements were evaluated using a 2D model.

Two major flood events occurred in October 2015 and May 2016. From these events, WPD gathered information about high water marks. RainVieux Radar Data provided information about the rainfall intensities including their distributions. These data sets were used to adjust the hydraulic model and provided confidence in the model output.

3.2.3.3 Primary Analysis

There were numerous unique alternatives developed that could reduce flood risk in the Paces Mill Tributary, all of which with different costs, benefits, and drawbacks. These many alternatives were compared utilizing a scoring matrix and three of the best scoring alternatives were advanced to the secondary analysis phase.

3.2.3.4 Secondary Analysis

The secondary analysis includes further refinement of the three selected alternatives from the primary analysis phase. These three alternatives were evaluated in both 2D and 1D model environments for the purposes of enumerating impacts of project implementation. These impact analyses included flood storage, flow, inundation and velocity analyses that demonstrate compliance with impact guidelines and potential risks associated with implementing the proposed improvements.

3.2.4 Final Alternative Selection and Preliminary Plan Development

The Hybrid Channel design was selected for the preliminary design. The preliminary design incorporated channel protection and erosion controls into the design from the Secondary Analysis. The Engineer's Opinion of Cost was updated to include the permanent erosion controls.

4 DRAINAGE POLICY AND DESIGN CRITERIA

The underlying themes that drive drainage and design criteria and will ultimately govern the ability to implement a project such as this, are generally common. These themes include desire to reduce flood risk to persons and property, to provide standards to analyze the benefits of creek before and after any potential improvements, and to assure that any improvements will provide benefit to the community without increased flood risk.

The City of Austin Drainage Criteria Manual (DCM) provides drainage policy and hydraulic design criteria for channels. The City of Austin Environmental Criteria Manual (ECM) provides floodplain modification requirements for channel improvements to preserve the natural character of the waterway, prevent degradation of water quality, and promote the stability of the waterway.

The DCM does have drainage criteria for channels; however, the majority of major waterways in the city are natural and have varying levels of service from a capacity standpoint, channel design criteria is much less prescriptive than it is for other drainage infrastructure. Thus, the DCM should primarily be held as a drainage policy document for this project. Policy should be extracted from Section 1 of the DCM and WPD's No Adverse Impacts Guidelines. These documents generally outline that projects should not adversely affect other persons or property and that flood risk up to the 100-year frequency should be contained inside of public ROW or easements. The design should meet requirements outlined in Section 6 of the DCM for open channel design.

The ECM sets forth the methodology for assessment of floodplains which provides baseline design criteria for restoration or mitigation of any channel. This project, being necessary for public safety, requires one-to-one restoration/mitigation and should include a net ecological uplift.

FEMA does have the permitting authority over mapped floodplains including Paces Mill Tributary. FEMA is tasked with assuring that floodplain alteration is compliant with the NFIP regulations, and has set forth modeling standards for evaluation and analysis of floodplains.

The US Army Corp of Engineers (COE) has permitting authority over Waters of the U.S. (WOTUS) and wetlands from the Clean Water Act. Their permitting authority has a focus on maintaining the ecological merits of waterways primarily or improving those merits.

5 DATA COLLECTION

5.1 FEMA

FEMA plays multiple roles in floodplain projects. FEMA creates and publishes floodplain mappings of creek and river flood risk for regulatory, informatory, emergency, and insurance purposes. The Paces Mill tributary has a mapped regulatory floodplain. The FEMA hydrologic and hydraulic models are available in the FloodPro model repository. The City of Austin regulatory models were used as baseline for modeling tasks in this preliminary study.

5.2 HYDROLOGIC DATA

Hydrologic data for the project was gathered primarily from three primary sources: The COA FloodPro model repository, survey data, and RainVieux radar data for record rainfall events.

- Onion Creek Regulatory Model: The City of Austin Onion Creek Hydrologic model was used as a baseline for analysis of the basin.
- Survey Data: Survey data was incorporated into the hydrologic model. An element was added to represent the regional pond on Vertex Boulevard.
- RainVieux Radar Data: This radar rain intensity data was provided by WPD and incorporated into simulations of record rainfall events for the October 2015 and May 2016 storms.

5.3 HYDRAULIC DATA

Hydraulic data for the project was gathered primarily from four primary sources: The COA FloodPro model repository, open source planimetric and elevation data, survey data for updating the hydrologic network, and measurements taken by WPD of high-water marks.

- Paces Mill Regulatory Model: This hydraulic model from the COA FloodPro repository included baseline input used primarily for Thaxton Road improvements.
- Planimetric and Elevation Data: This data gathered from the COA and TNRIS were key components of the 2D models created in this study. Elevation data from 2017 LiDAR provides coverage for any area not surveyed. Planimetric data serves primarily to designate roughness values in the 2D model.
- Survey Data: Survey data was gathered for the project reach and is the primary source of elevation data for the project.
- COA HWM Data: WPD gathered high water mark data from affected homes after the October 2015 and May 2016 record events.

5.4 ENVIRONMENTAL DATA

Environmental data about the reach was gathered by HDR from both desktop and in field surveys of the project reach. HDR performed a visual assessment of the existing stream, conducted stream pebble counts, and photographed the channel within the project area.

6 EXISTING HYDROLOGIC MODEL DEVELOPMENT METHODOLOGY

This section identifies parameterization methods used in both the effective model and this study. For this study, a copy of the effective model was truncated to only include the Paces Mill Tributary and the following parameters were evaluated.

- Meteorology: Updated from using old COA criteria to the COA Atlas 14 rainfall
- Basin Delineation: *No Revisions*
- Basin Transform Parameters: *No Revisions*
- Basin Loss Parameters: Revert Initial Abstraction values to default.
- Reach Routing: No revisions for Thaxton Road culvert improvements design. For Paces Mill Tributary channel improvements, the reach routing storage-discharge curve for reach RLOCR350A will be adjusted based on removal of Thaxton Road crossing to mimic highest loss of reach storage due to improving Thaxton Road culvert system.
- Reservoir Routing: Add Vertex Pond
- Record Event Recreation

The following subsections address modifications to specific model parameters in more depth.

6.1 METEOROLOGY

Meteorological events are provided within the HEC-HMS model to simulate the 500-, 100-, 50-, 25-, 10-, 5-, and 2-year frequency storm events. These rainfall depths are derived from the City of Austin Drainage Criteria Manual's recommended depth-frequency distributions for South Austin based on NOAA Atlas 14. Design storm depth-duration-frequency data is tabulated in Table 1 :

Table 2-1A, Depth-De	ble 2-14, Depth-Duration-Frequency Values (Zone_1)								
Duration	Depth of Precipitation (Inches) by Recurrence Interval								
	2-ут.	S-yr.	10-yr.	25-yr.	50-yr.	100-yr.	200-yr.	500-yr.	
5-min.	0.53	0.67	0.B0	0.98	1.12	1.28	1.45	1.68	
15-min.	1.06	1.35	1.60	1,95	2.24	2.54	2.87	3,34	
30-min	1.49	1,90	2.25	2.75	3,13	3,54	4.01	4.69	
t-ĥis	1,96	2,51	2.99	3.66	4,19	4.77	5,45	6,45	
2-hr.	2.42	3,15	3.82	4,81	5,63	6.57	7,65	9.27	
3-hr.	2.70	3,54	4.34	5,55	6.60	7.81	9,21	11.31	
6-hr.	3.17	4.20	5.21	6,78	8.17	9.79	11.65	14,48	
12-hr.	3,64	4,84	6.02	7.85	9.47	11,37	13.58	16,94	
24-hr.	4,14	5,51	6.84	8.90	10.69	12.80	15.27	19.05	

Table 1- Depth-Duration-Frequency values

6.2 BASIN DELINEATION

For this study, no significant revision was performed from the delineation provided in the regulatory model. For the calibrated storm events, the effective model's basins were divided to match the rainfall grid provided by Rainvieux. The division of the basins did not impact the flows. Values presented in Table 2 reflects the drainage areas of the updated and effective hydrologic models.

Figure 2. Paces Mill Subbasin Boundaries (shown in blue) and Rainviex Grid (shown in red)

Basin	Area (sq mi)		
LOCR320	0.358723		
LOCR330	0.332783		
LOCR340C	0.022825		
LOCR340A	0.178911		
LOCR340B	0.120515		
LOCR350A	0.172401		
LOCR350B	0.09827		
LOCR350C	0.097361		

Table 2. Areas of Updated and Effective Paces Mill Subbasins

6.3 BASIN LOSS PARAMETERS

Initial abstraction values were adjusted based on discussions with the city. The initial abstraction values developed for the Onion Creek model reflected losses within the Onion Creek basin due to karst features

which are not believed to be present in the Paces Mill Tributary. Based on this discussion, set initial abstraction values were removed from the model and the default internal calculation within the program for SCS Method was utilized.

Table 3 provides curve numbers and percent impervious cover utilized in the hydrologic analysis. These values are unchanged from those provided in the regulatory model.

Exis	ting Conditions I	Hydrology	Ultimate Conditions Hydrology			
Basin	Curve Number	Impervious (%)	Basin	Curve Number	Impervious (%)	
LOCR320	81	13.6	LOCR320	81	57.8	
LOCR330	84	12.5	LOCR330	84	55.6	
LOCR340C	78	25.2	LOCR340C	78	25.2	
LOCR340A	81	52.2	LOCR340A	81	55.3	
LOCR340B	79	53.6	LOCR340B	79	53.6	
LOCR350A	73	36.5	LOCR350A	73	42.7	
LOCR350B	67	34.4	LOCR350B	67	38.3	
LOCR350C	65	36.7	LOCR350C	65	36.7	

Table 3. Curve Numbers and Percent Impervious for Existing and Ultimate Conditions

6.4 REACH ROUTING / ELEMENT CONFIGURATION

No revisions to reach routing was made to the Thaxton Road culvert improvements hydraulic model. For the Paces Mill Tributary channel improvements hydraulic model, the storage-discharge curve for reach RLOCR350A was adjusted based on removal of Thaxton Road crossing to mimic highest possible loss of reach storage due to improving Thaxton Road culvert system.

Table 4 provides the reach RLOCR350A storage-discharge rating curve for existing conditions and the possible loss of storage for Thaxton Road culvert improvements.

Thaxton	Existing	Thaxton Improved		
Reach RL	.OCR350A	Reach RLOCR350A		
Storage (ac-ft)	Discharge (cfs)	Storage (ac-ft)	Discharge (cfs)	
1.58	30	1.6	30	
2.31	50	2.35	50	
3.98	110	4.07	110	
6.67	220	6.66	220	
14.89	550	13.11	550	
22.09	1090	21.85	1090	
37.8	2720	35.43	2720	
42.1	3260	39.99	3260	
45.62	3810	42.92	3810	
52.38	4770	49.77	4770	
59.64	6100	57.48	6100	
63.22	6700	61.31	670	

Table 4. Reach RLOCR350A Storage-Discharge Rating Curves for Existing and Improved Thaxton Road

6.5 RESERVOIR ROUTING

The recently constructed (approximately 2014) regional pond behind Blazier Elementary School on Vertex Boulevard (Vertex Pond) was added to the hydrologic model to simulate storage at the location. This pond is included in all basin models. Based upon aerial imagery, the pond was constructed prior to the calibration storm events in 2015 and 2016.

Figure 3. Vertex Pond Location Map

6.5.1 Vertex Pond Elevation Storage

The rating curve for the Vertex pond water surface elevation to storage data was developed based upon the project's survey of the Vertex pond. This rating curve is provided in Table 5.

Table 5. Vertex Pond Rating Curve

WSEI (ft)	Storage (ac-ft)
564.56	0
565	3.02
566	13.54
567	29.04
568	47.52
569	68.07
570	90.1
571	113.39
572	137.65
573	162.86
574	189.23
575	216.51
576	244.1

6.5.2 Vertex Pond Storage Discharge

The Vertex Pond is located at the downstream end of the basin LOCR320 in the hydrologic model. The pond abuts the Paces Mill Tributary and is separated from the tributary by an earthen embankment that parallels the tributary. This pond was built to serve recent development in the basin as stormwater and water quality management. Standing water visible in aerial imagery is located at wet pond locations which will stack runoff for attenuation purposes. The pond has two 12-inch PVC pipes which serves the primary outlet for water quality control. The spillway serves as the flood control structure (weir) and is a concrete riprap lined trapezoidal notch in the earthen embankment. The weir has an approximate bottom width of 52 feet, an opening top width of approximately 88 feet, and a length of approximately 40 feet. The weir is approximately a foot and a half above the flowline of the pond and appears to match the channel bottom elevation at the downstream side.

The function of the weir is highly sensitive to tailwater conditions (flow depth in the tributary). A 2D simulation of this confluence was created to develop an elevation-discharge relationship for the weir to be used in the hydrologic analysis.

The 2D simulation was performed in HEC RAS using the Ultimate Conditions 500-year storm event at the confluence of the Vertex Pond and the receiving channel. This model provided the highest expected inflows to the Vertex Pond and receiving channel (junction JLOCR340C). This analysis relies on the assumption that basins LOCR320 and LOCR330 will experience identical rainfall which appear appropriate since the basins are relatively small and adjacent to one another.

A time series tables of the pond outlet was created with consideration to tailwater conditions. Two time series data sets were created from the model results: one for discharge through the primary spillway of the Vertex pond, and another for pond WSEL. The spillway discharge and pond WSEL were combined to create an Elevation-Discharge Time Series (1-minute increments) shown in Figure 4.

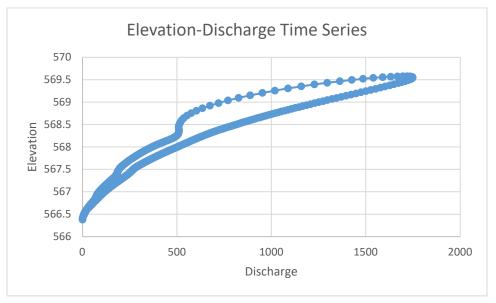


Figure 4. Elevation-Discharge Time Series for Vertex Pond

The Vertex Pond Storage-Discharge table was based upon the pond terrain and the Elevation-Discharge table shown above. The values chosen from the elevation discharge curve are from the ascending (lower) limb of the graph. Table 6 provides the storage-discharge table.

Elevation (ft)	Storage (ac-ft)	Discharge (cfs)	
564.56	0.00	0.00	
565	3.02	1.00*	
566	13.54	2.00*	
567	29.04	88.14	
568	47.52	368.41	
569	68.07	770.49	
569.55	80.30	1748.47	
571	113.39	4394.87	

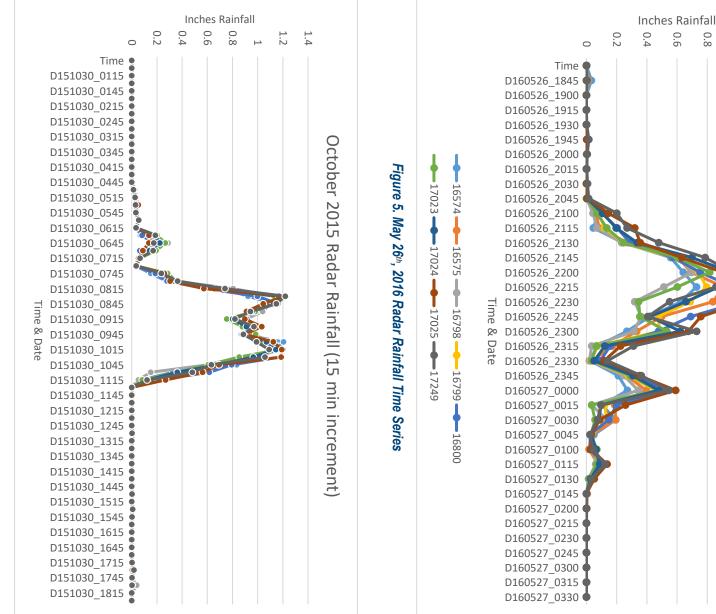
Table 6. Storage-Discharge Values for Vertex Pond

Value is interpolated

The maximum discharge in the Elevation-Discharge time series was 1748.47cfs at an elevation of 569.55ft. To create a discharge for the highest storage value, it was extrapolated by extending the elevationdischarge curve for higher discharges to determine the discharge at elevation 571-ft. Discharge values marked with an asterisk are added to maintain monotonic increase in rating curve values before the weir is engaged.

6.6 RECORD EVENT RECREATION

A truncated copy of the effective HEC-HMS model was used for this analysis. Within this model, all of the basins were divided based upon the grids associated with the recorded gridded radar rainfall measurements. Measured rainfall is applied to each subbasin component based upon the location of the rainfall measurement.


6.7 RAINFALL GAUGES / METEOROLOGY

Historical rainfall was provided by the City for two events; the Halloween (October 30th) 2015 storm (Figure 6) and the May 26th, 2016 storm (Figure 5). Rainfall data was collected using radar and is presented in time series data based on a spatial grid of 1 kilometer by 1 kilometer provided by Rainvieux. The time series in Figure 5 and Figure 6 were provided.

PACES MILL FLOOD RISK REDUCTION PRELIMINARY ENGINEERING REPORT APRIL 2023

0.6

0.8

1.2

May 2016 Radar Rainfall (15 min increment)

Figure 6. October 30th, 2015 Radar Rainfall Time Series

There is noticeably more spatial variation of rainfall in the May event while the October storm produced rather consistent rainfall throughout the observed event.

Storm gauge data was input into HEC-HMS using the time series provided for each storm event and applied to each subbasin.

6.8 BASIN DELINEATION

None of subbasins in the Paces Mill Tributary hydrologic model fell completely within one of the rainfall grids provided with the rainfall data (see Figure 2). Hydrologic subbasin elements were divided by rainfall data grid and given a suffix corresponding to the rainfall grid which the portion of subbasin falls into. In the process of dividing the subbasins in the model, only the subbasin area was adjusted. Subbasin subcomponents have no changes in model connectivity, or changes to subbasin loss or transformation parameters. Table 7 outlines each subbasin subcomponent and provides its partial area.

Element	Area (sq mi)
LOCR330_17024	0.27
LOCR330_17025	0.05
LOCR330_17249	0.01
LOCR330_16799	0.00
LOCR340C_16799	0.02
LOCR340C_16800	0.00
LOCR320_16799	0.23
LOCR320_17024	0.07
LOCR320_16798	0.04
LOCR320_10723	0.02
LOCR340a_17025	0.10
LOCR340A_16800	0.08
LOCR340B_16800	0.07
LOCR340B_16799	0.04
LOCR340b_17024	0.01
LOCR340B_17025	0.00
LOCR350A_16800	0.10
LOCR350A_16799	0.05
LOCR350A_16574	0.01
LOCR350B_16575	0.05
LOCR350B_16574	0.03
LOCR350B_16800	0.02
LOCR350B_16799	0.00
LOCR350C_16575	0.07
LOCR350C_16574	0.03

Table 7. Subareas for Each Subbasin Subcomponent

6.9 SENSITIVITY TEST

A sensitivity test of the 100-year meteorological event was simulated in the Paces Mill basin model (undivided) as well as the gridded version (divided). The results are tabulated in Table 8.

Element	Q Trunc (cfs)	Q Gridded (cfs)	Change (cfs)	Change%
JLOCR320_340C	2357.3	2359.6	2.3	0.10
JLOCR330	1222.8	1223.7	0.9	0.07
JLOCR340A	991.2	992.3	1.1	0.11
JLOCR340B	1025.6	1027	1.4	0.14
JLOCR340B_340C	3224.8	3227.9	3.1	0.10
JLOCR340C	1222.4	1223.3	0.9	0.07
JLOCR350A	3642.2	3645.7	3.5	0.10
JLOCR350B	3658	3661.5	3.5	0.10
JLOCR350C	3688.8	3692.1	3.3	0.09

Table 8. Results of Paces Mill Basin Model Sensitivity Test for the 100-year Meteorological Event

Division of the subbasins within the basin model had little impact on the results of the simulation and the basin does not appear to be sensitive to dividing subbasins into smaller basins.

7 EXISTING HYDRAULIC MODEL METHODOLOGY

This section identifies the methods used to develop the 2D hydraulic model for this study. The effective hydraulic 1D model was used for the Thaxton Road culvert improvements analysis. The following subsections address each of the 2D hydraulic model parameters in more depth.

- Model Terrain
- Model Boundary Conditions
- Model Calibration and Roughness

7.1 MODEL TERRAIN

The terrain used in the development of both the 2D hydraulic and revisions or additions to the 1D hydraulic model comes from two primary sources. The majority of the terrain model is based on an onthe-ground survey performed by Zamora Surveying (see Figure 7 below). The survey was supplemented with City of Austin 2017 LiDAR data to give a complete representation of the terrain for the model.

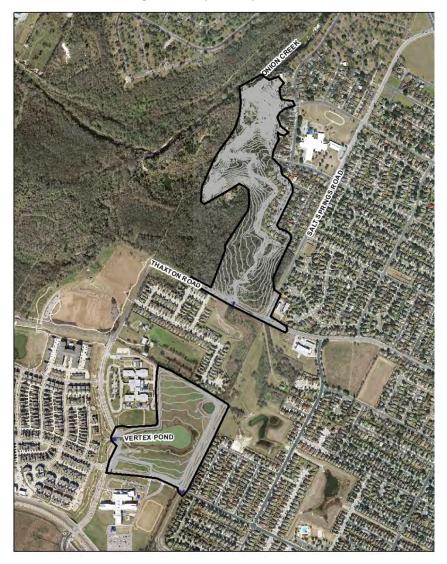


Figure 7. Survey Limits

7.1.1 1D Model Geometry

The one-dimensional model used for analysis and design at the Thaxton Road low water crossing is primarily sourced from the effective model. KFA made several changes to model geometry to best represent proposed improvements to the crossings.

- RS 4533; Downstream Reach Lengths Adjusted to account for addition of XS 4464.
- RS 4464: Added cross section at limits of grading changes. Roughness values were chosen to align with those of adjacent cross sections.
- RS 4448: Adjusted cross section geometry and to approximate grading adjacent to proposed culvert improvements. Ineffective flow areas and bank stations adjusted based on grading. Downstream Reach Lengths adjusted.
- RS 4418: Geometry and conveyance adjusted to reflect proposed drainage / roadway improvements.
- RS 4383: Added cross section to approximate grading adjacent to proposed culvert improvements.

7.2 2D BOUNDARY CONDITIONS

There are multiple boundary conditions applied to this model, including both internal boundary conditions for flow input as well as external boundary conditions for tailwater and flow leaving the model. Figure 8 itemizes each boundary condition used in the existing conditions hydraulic 2D model.

Figure 8. Hydraulic 2D Model Boundary Conditions

7.2.1 Internal Boundary Conditions

There are three internal boundary conditions used in the hydraulic model. A direct runoff hydrograph sourced from the HEC-HMS model is associated with each internal boundary condition. Boundary condition 'Thaxton Road' represents flow leaving Thaxton Road (Junction JLOCR350A). Boundary

conditions LOCR350B and LOCR350C each represent subbasin flow for the similarly named subbasins in the hydrologic model.

7.2.2 External Boundary Conditions

The project area of the Paces Mill Tributary is near the lower end of the tributary's basin and near its confluence with Onion Creek. For this reason, Onion Creek's water surface elevation has potential to significantly impact the Paces Mill Tributary's water surface elevation near the confluence. However, due to the size of the Paces Mill Tributary watershed in comparison to the Onion Creek watershed, the peak of the runoff from a storm event is not likely to occur coincidentally for the two watersheds. The selections of the tailwater boundary conditions were based on Table 7-3 from the HEC-22 document provided in Table 9.

	Free	quencies for Co	incidental Occurren	се
Area	10-Year	Design	100-Year	Design
Ratio	Main Stream	Tributary	Main Stream	Tributary
10,000 to 1	1	10	2	100
	10	1	100	2
1,000 to 1	2	10	10	100
	10	2	100	10
100 to 1	5	10	25	100
	10	5	100	25
10 to 1	10	10	50	100
	10	10	100	50
1 to 1	10	10	100	100
	10	10	100	100

Table 9. Frequencies for Coincidental Occurrence taken from Table 7-3 of HEC-22.

The Paces Mill Tributary has a total area of 1.35 square miles and the total contributing area of Onion Creek at the confluence is 284 square miles. The area ratio of 100:1 is the most appropriate representing ratio from Table 7-3. The frequency storms and the associated Onion Creek tailwater conditions are provided below:

- 5-year Onion Creek tailwater (533.85 ft)
 - o 2-year design storm
 - o 10-year design storm
 - May calibration storm (approximate 10-year storm)
 - 25-year Onion Creek tailwater (542.8 ft)
 - o 25-year design storm
 - o 100-year design storm
 - October calibration storm (approximate 100-year storm)

The Onion Creek tailwater elevations for the Paces Mill Tributary model were obtained from the Onion Creek effective model at cross-section 94254. Note: These values are from the effective Onion Creek hydraulic model and do not reflect Atlas 14 rainfall rates.

7.3 MODEL CALIBRATION AND ROUGHNESS

To calibrate the hydraulic 2D model of Paces Mill Tributary, the Manning's 'n' (roughness) values were adjusted to closely match the recorded water surface elevations with the model's output of the calibrated storm's water surface elevations. Major considerations in the calibration involve both the roughness values selected and the distribution of roughness values.

7.3.1 Delineation of Roughness Boundaries

The majority of roughness values spatial distribution is based on City of Austin planimetric data. The majority of features in the 2D model are well delineated such as roads, sidewalks and other pavement, pools, and structures. Most of these features have predictable roughness value ranges which were directly assigned before the calibration process begins. Features such as roads and pavement have relatively low roughness values in the 0.03 range while a structure is represented with a high roughness value (Manning's 'n' value of 3).

The calibration effort mainly focuses on three roughness areas; the channel bottom roughness (this area is clearly less vegetated than bank and overbank areas), the channel bank and overbank roughness, and the roughness of flooded lawn areas in the project area. Because measurements of flood depths for the calibration storm are heavily clustered, there was little justification for more discrete delineation of roughness zones, especially downstream of flood measurements.

7.3.2 Calibration Observations

Adjustment of each of the three calibration roughness zones (channel bed, banks and overbanks, and lawn areas) together control the output for both calibration storms. The May event did produce substantial flooding throughout the neighborhood in the project area but had a much smaller flood footprint than the October event. The May storm event had a more significant impact on the proposed channel bed roughness values. This may be due to the May event's narrower flooding extents.

When considering both the October and May events together; the roughness values for the less vegetated channel bottom exceeded those of the vegetated banks, overbanks, and lawn areas ladened with obstructions. For this reason, the May event has been disregarded from the calibration.

Using the October storm, a combination of roughness values was chosen to simulate measured water surface elevations at the downstream end of the neighborhood area.

Lawn roughness values were selected to best simulate the observed grade line throughout the area of measurements. Table 10 provides a summary of roughness values developed based upon the calibration storms.

7.3.3 Calibration Results

Table 10 provides roughness values used for calibration.

Calibration Roughness Values					
Feature	Roughness				
Channel (Bed)	0.08-0.12				
Channel (Bank andOverbank)	0.25				
Lawns	0.155				
Structures	3				
Decks	0.02				
Streets	0.03				
Driveways	0.02				
Manmade Hydrography	0.015-0.025				
Paved	0.023				
Pools	0.02				

Table 10. Calibration Roughness Values

Table 11 provides a comparison of the recorded water surface elevation for the October 2015 storm event.

Table 11. Calibration Results of the Recorded Water Surface Elevation for October 2015 Event

Calibration Results - October							
Address	ddress Measured WSEL (ft)		Simulated - Measured Difference (fi				
6207 Tupelo	552.71	553.15	0.44				
6209 Tupelo	553.94	553.43	-0.51				
7702 Paces Mill	554.4	553.83	-0.57				
7800 Paces Mill	554.13	554.03	-0.1				
7802 Paces Mill	554.08	554.16	0.08				
7804 Paces Mill	554.43	554.34	-0.09				
7806 Paces Mill	554.53	554.48	-0.05				
7808 Paces Mill	552.52	554.6	2.08				
7810 Paces Mill	554.51	554.8	0.29				
7812 Paces Mill	554.61	555	0.39				
7814 Paces Mill	554.89	555.31	0.42				
7816 Paces Mill	555.81	555.6	-0.21				
7818 Paces Mill	556.97	555.5	-1.47				
7807 Paces Mill	554.88	554.56	-0.32				

Table 12 provides a comparison of the recorded water surface elevation for the May 2016 storm event. It is observable that the simulation does not well approximate the storm experienced in May 2016. It is believed that some anomaly may have occurred during this event such as clogging that may have produced such high water surfaces.

Calibration Results - May							
Address	Measured WSEL (ft)	Simulated WSEL (ft)					
7804 Paces Mill	552.68	551.44					
7806 Paces Mill	552.61	551.69					
7808 Paces Mill	552.52	551.77					
7810 Paces Mill	553.92	552.32					
7816 Paces Mill	556.22	553.14					

Table 12. Calibration Results of the Recorded Water Surface	ce Elevation for May 2016 Event

Images of the Paces Mill Tributary are provided below. Figure 9, Figure 10, and Figure 11 show the extensive vegetation within the channel and along its overbanks.

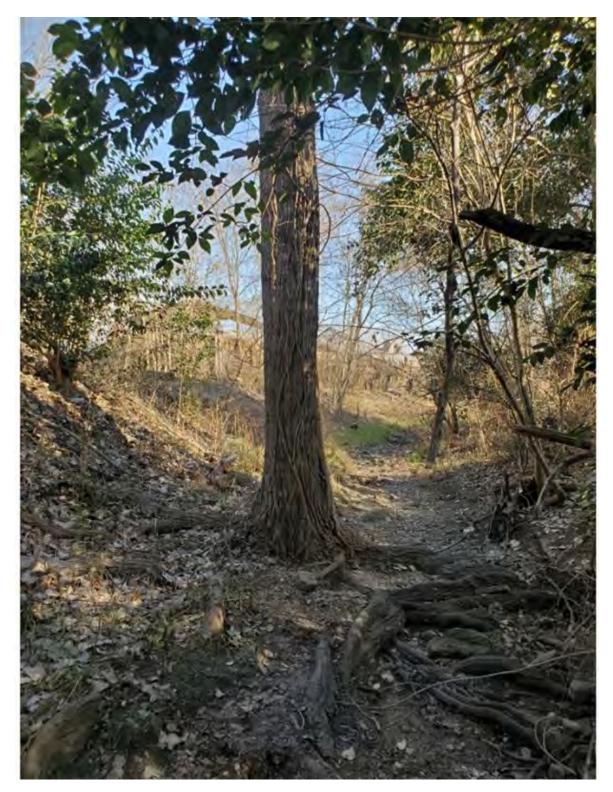


Figure 9. Extensive Vegetation within the Channel and along its Overbank (Paces Mill Tributary)

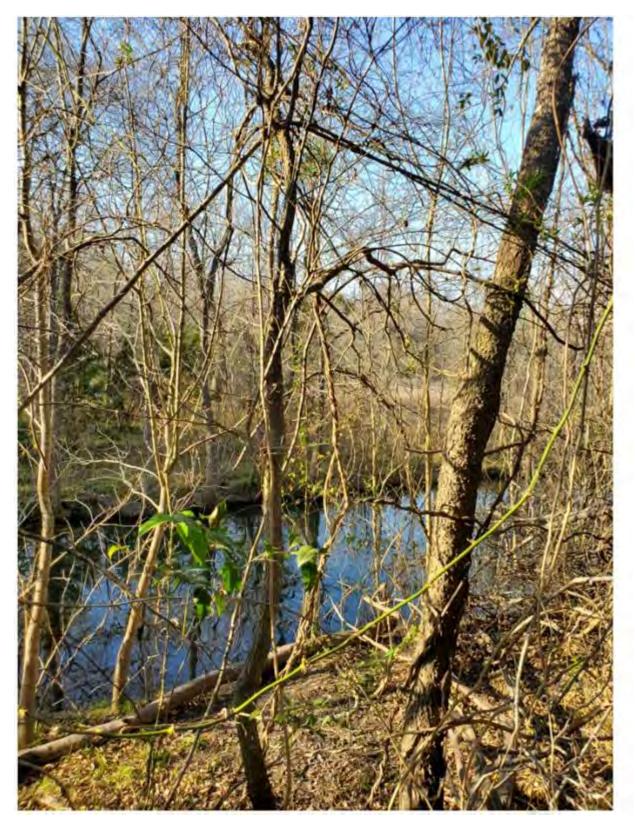


Figure 10. Extensive Vegetation within the Channel and along its Overbank (Paces Mill Tributary)

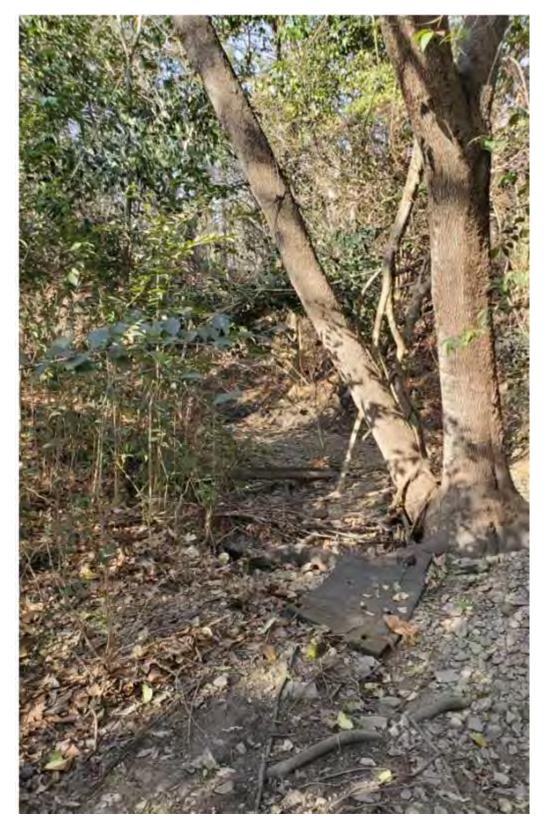
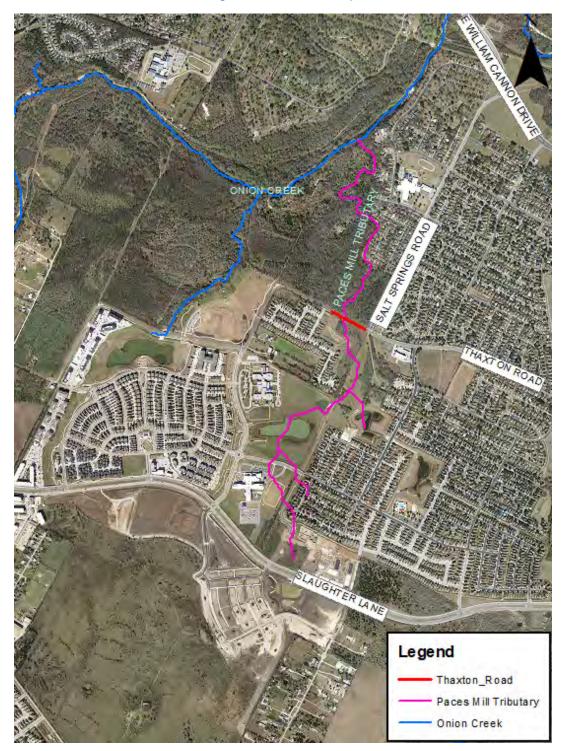


Figure 11. Extensive Vegetation within the Channel and along its Overbank (Paces Mill Tributary)

8 FLOOD RISK REDUCTION ANALYSIS


8.1 THAXTON ROAD IMPROVEMENTS

K Friese + Associates, Inc. (KFA) contracted with the City of Austin (COA) to evaluate and provide design alternatives to reduce flood risk at Thaxton Road. Thaxton Road is a known low water crossing and has a history of stormwater overtopping the road. Stormwater runoff produced by the Paces Mill tributary drains naturally to the crossing, which is drained by existing culverts that run perpendicularly under Thaxton Road. Thaxton Road overtops during the 5-year storm event (0.27-ft) due to low capacity within the existing culverts. This low water crossing has the potential to become dangerous to traffic in events exceeding the 2-year event.

Drainage improvement alternatives to reduce the flood risk at Thaxton Road are presented in this technical memo. The paramount drainage deficiency at Thaxton Road is the culverts. Generally, the culverts are under capacity and shallow compared to the road which reduces the allowable headwater depth. Proposed improvements increase the conveyance capability of the Thaxton Road culverts and lower the profile of the culverts. These improvements are not designed to meet DCM 1.2.4.D directly but are instead based on level of service. To meet the level of service requirements, the design improvements will eliminate overtopping of the road for the 2-, 10-, 25-, and 100-year events. See Figure 12 for a location map and proposed study area.

Figure 12. Location Map

8.1.1 Hydrologic Analysis

This section identifies hydrologic output used in design alternatives for Thaxton Road. For this study, a copy of the effective model had been truncated and the basin parameters re-assessed. This assessment is discussed more in depth in the Existing Conditions H&H Report. Table 13 summarizes the flow results of the hydrologic analysis. The design of the culvert sizes is based upon Ultimate Condition flows. Below is a list of the large-scale updates to the effective hydrologic model.

- Meteorology: Updated from using old COA criteria to the COA Atlas 14 rainfall
- Reservoir Routing: Added Vertex Pond
- Record event Recreation: Removed all initial abstraction values and reverted to default values in HEC-HMS

Hydrologic Results								
Design	Design Flow	HEC-HMS Basin	HEC-HMS					
Storm	(cfs)	Model	Simulation					
2	779.20	KFA_Ult_50/20_Trunc	ULT2YrTtrunc					
10	1931.00	KFA_Ult_10_Trunc	ULT10YrTtrunc					
25	2750.20	KFA_Ult_04_Trunc	ULT25YrTtrunc					
100	4062.00	KFA_Ult_01_Trunc	ULT100YrTtrunc					

Table 13. Ultimate Design Flows at Thaxton Road

8.1.2 Existing Hydraulic Performance

The existing structure is four (4), 48-inch concrete pipe culverts at a 2.6% slope. The water surface elevations (WSEL) for each design storm under Ultimate Conditions are shown in the attached culvert exhibits. Tabulated output is a product of the HEC-RAS plan labeled "KFA_ULT_Frequency".

Design	Pipe Flow	Headwater	Tailwater	Flow Over	Velocity Over	Depth Over	Culvert DS
Storm	(cfs)	Elevation	Elevation	Road (cfs)	Road (fps)	Road (ft)	Velocity (fps)
2	402.27	562.28	558.67	376.33	1.73	0.56	13.77
10	519.17	562.77	560.05	1410.23	2.43	1.10	10.33
25	459.04	563.10	560.67	2290.56	2.79	1.42	9.13
100	423.95	563.44	561.40	3629.25	3.19	1.81	8.43

Table 14: Existing Conditions Hydraulic Results

8.1.3 Proposed Hydraulic Performance

The water surface elevations (WSEL) for each design storm under proposed conditions are shown in the attached culvert exhibits as Appendix A. The proposed grading around the culvert structures is 1:1 for the upstream slope and 3:1 for the side slopes upstream and downstream. Existing utilities located adjacent to Thaxton Road which may be in conflict are listed below:

• 8-inch wastewater line 19-feet upstream of the culvert: There is no conflict with the proposed designs.

- 24-inch water line with 42-inch encasement 37-feet downstream of the culvert: There is no conflict with the proposed designs.
- 24-inch storm drain that outfall on the west side of the downstream channel: The existing headwall will need to be removed and the storm drain line will be truncated to the proposed headwall for all designs.
- 66-inch storm drain that outfall on the east side of the downstream channel: The existing headwall will need to be removed and the storm drain line will be truncated to the proposed headwall for all designs.
- Power pole needs to be moved in the 100-year design.

2-YEAR DESIGN

The proposed design for the 2-year storm is four (4), 6-foot x 4-foot culverts at a 0.5% slope. The 2-year proposed design is shown in the 2-year exhibit attached in Appendix A.

Design	Pipe Flow	Headwater	Tailwater	Flow Over	Velocity Over	Depth Over	Culvert DS
Storm	(cfs)	Elevation	Elevation	Road (cfs)	Road (fps)	Road (ft)	Velocity (fps)
2	778.60	560.24	558.63	0	N/A	N/A	8.11
10	1001.51	562.72	559.98	927.89	2.31	1.00	10.43
25	974.57	563.06	560.50	1775.03	2.75	1.39	10.15
100	971.02	563.49	561.01	3082.19	3.23	1.86	10.11

Table 15. 2-Year Design Hydraulic Results

10-YEAR DESIGN

The proposed design for the 10-year storm is five (5), 8-foot x 6-foot culverts at a 0.5% slope. The 10-year proposed design is shown in the 10-year exhibit attached in Appendix A.

Design Storm	Pipe Flow (cfs)	Elevation (ft)	Elevation (ft)	Flow Over Road (cfs)	Velocity Over Road (fps)	Depth Over Road (ft)	Culvert DS Velocity (fps)
2	778.60	558.92	558.69	0	N/A	N/A	3.55
10	1929.40	561.54	560.12	0	N/A	N/A	8.04
25	2145.47	562.45	560.60	604.13	2.07	0.80	8.94
100	2241.35	562.99	561.02	1811.85	2.76	1.4	9.34

Table 16. 10-Year Design Hydraulic Results

25-YEAR DESIGN

The proposed design for the 25-year storm is ten (10), 8-foot x 6-foot culverts at a 0.5% slope. The 25-year proposed design is shown in the 25-year exhibit attached in Appendix A.

Des	sign	Pipe Flow	Headwater	Tailwater	Flow Over	Velocity Over	Depth Over	Culvert DS
Sto	orm	(cfs)	Elevation	Elevation	Road (cfs)	Road (fps)	Road (ft)	Velocity (fps)
	2	778.60	558.80	558.75	0	N/A	N/A	1.75
1	10	1929.40	560.62	560.31	0	N/A	N/A	4.02
2	25	2749.60	561.57	560.90	0	N/A	N/A	5.73
1(00	3321.88	562.5	561.48	731.33	2.17	0.88	6.92

Table 17. 25-Year Design Hydraulic Results

100-YEAR DESIGN

The proposed design for the 100-year storm is fifteen (15), 8-foot x 6-foot culverts at a 0.5% slope. The 100-year proposed design is shown in the 100-year exhibit attached in Appendix A. Even with these culvert improvements, the tailwater elevation still overtops Thaxton Road. Raising the roadway elevation by approximately one foot (elevation 562.5') eliminates the potential for the roadway to be overtopped in the 100-year storm. The extents of the proposed Thaxton Road improvements are also shown in the attached Appendix A. The roadway improvements will conflict with an existing power pole that will need to be relocated. The power pole is located approximately 200-ft from the upstream channel of Thaxton Road.

Table 18. 100-Year Design Hydraulic Results

Design Storm	Pipe Flow (cfs)	Headwater Elevation	Tailwater Elevation	Flow Over Road (cfs)	Velocity Over Road (fps)	Depth Over Road (ft)	Culvert DS Velocity (fps)
2	778.60	558.79	558.77	0	N/A	N/A	1.21
10	1929.40	560.50	560.37	0	N/A	N/A	2.68
25	2749.60	561.28	561.00	0	N/A	N/A	3.82
100	4053.20	562.32	561.67	0	N/A	N/A	5.63

8.1.4 Engineer's Opinion of Probable Cost (OPC)

An Engineer's Opinion of Probable Cost was calculated for each level of service. The construction cost estimate is approximately \$0.5 million for the 2-year design, \$0.7 million for the 10-year design, \$1 million for the 25-year design, and \$1.7 million for 100-year design. These cost estimates are attached in

Appendix **B**.

8.1.5 Project Impacts

As part of the Thaxton road analysis, the KFA team performed an analysis to estimate maximum potential impacts due to conveyance improvements at Thaxton Road. This analysis involved removing the crossing all together to observe the maximum loss in storage expected in the reach due to improvements. For the smaller flows there is an increase in storage due to the existing Thaxton Road culvert system having the conveyance capacity for smaller flows. This is reflected in Table 19 as paired data for the reach.

Reach RLOCR350A				
Storage with Thaxton Crossing (ac-ft)	Storage without Thaxton Crossing (ac-ft)	Discharge (cfs)		
1.58	1.6	30		
2.31	2.35	50		
3.98	4.07	110		
6.67	6.66	220		
14.89	13.11	550		
22.09	21.85	1090		
37.8	35.43	2720		
42.1	39.99	3260		
45.62	42.92	3810		
52.38	49.77	4770		
59.64	57.48	6100		
63.22	61.31	6700		

Table 19. Paired Data Comparison from Thaxton Road Crossing Removal

The increase in flows from the expected storage loss of the Thaxton Road crossing removal are shown in Table 20. There is a decrease in flows for the 2-year storm near Thaxton Road. The 2-year storm is the only storm event that does not overtop Thaxton Road. The basin models and simulations of the HEC-HMS runs are shown in Table 21. See Appendix C for the hydrologic flow results with and without the Thaxton Road Crossing.

Post-Construction Flows Increase (Ultimate Hydrology) (cfs)						
Element	2 - Year	10 - Year	25 - Year	100 - Year		
LOCR320	0	0	0	0		
VertexPond	0	0	0	0		
LOCR330	0	0	0	0		
JLOCR330	0	0	0	0		
RLOCR340C	0	0	0	0		
LOCR340C	0	0	0	0		
JLOCR340C	0	0	0	0		
JLOCR320_340C	0	0	0	0		
LOCR340A	0	0	0	0		
PCM_1_200	0	0	0	0		
JLOCR340A	0	0	0	0		
RLOCR340B	0	0	0	0		
LOCR340B	0	0	0	0		
PCM_1_100	0	0	0	0		
JLOCR340B	0	0	0	0		
JLOCR340B_340C	0	0	0	0		
RLOCR350A	-2.7	7.8	14	2.8		
LOCR350A	0	0	0	0		
JLOCR350A	-2.6	19.6	30.1	7.8		
RLOCR350B	15.1	8.4	21.6	15.6		

Table 20. Flow Increase from Storage Loss

Post-Construction Flows Increase (Ultimate Hydrology) (cfs)					
Element	2 - Year	10 - Year	25 - Year	100 - Year	
LOCR350B	0	0	0	0	
JLOCR350B	15	8.4	21.6	17.4	
RLOCR350C	18.1	5.9	21.8	18	
LOCR350C	0	0	0	0	
JLOCR350C	19.1	5.9	21.8	18	

Table 21. HEC-HMS Models and Simulations

HEC-HMS Basin Model	HEC-HMS Simulation
	ThaxtonRemoval_2Yr
KFA_Ult_Thaxton_Imprv	ThaxtonRemoval_10Yr
KFA_UIL_INAXION_IMPIV	ThaxtonRemoval_25Yr
	ThaxtonRemoval_100Yr

8.2 PRIMARY ANALYSIS

The primary analysis follows calibration of the existing hydraulic model and serves to provide high level analysis of possible improvement combinations that will reduce flood risk to the Paces Mill neighborhood and improve the local community. Analytics produced in the primary analysis phase were used to determine preferred alternatives for more in-depth analysis in the Secondary Analysis phase.

The primary analysis phase consists of development of 9 unique combinations of physical improvements that could be done to reduce flood risk to the Paces Mill neighborhood. These improvement combinations are preliminary and designed with focus on maintaining flow within channel banks.

Roughness values are adjusted in kind with proposed channel geometric modifications.

References to floodplain that follow refer to the simulated flood extents as determined using the calibrated hydraulic model as a basis that have been amended to include any proposed improvements.

8.2.1 Alternatives

The alternatives that were developed for the primary analysis are described in Table 22.

Table 22. Primary Analysis Alternatives

No.	Description	Terrain Input	Roughness Input	Output
1A	Non-structural improvements - Buyout of homes in the 10-year floodplain. This alternative itemizes the homes inundated in the 10-year fully developed floodplain. The existing (pre-project) conditions simulation of the 10-year fully developed storm is used to determine homes at risk of flooding in this alternative. For this analysis home acquisition cost is determined as \$386 per square foot of structure plus \$50,000 for demolition.	Terrain model based on the on the ground survey by Zamora	Roughness distribution determined during the existing hydraulic model calibration process	2 homes have expected inundation in the fully developed 10-year event.
2A	10-year Natural Channel - 10-yr storm runoff designed to stay within channel banks. This alternative limits improvements to areas outside of the Waters of the United States (WOTUS) to minimize permitting requirements.	Terrain model based on the on the ground survey by Zamora. This surface was amended to include dual benches. The lower bench is a minimum of 2 feet above the flowline of the existing channel and a minimum width of 25 feet and the secondary bench is 3.5 feet above the first with a minimum width of 60.	In areas of proposed channel improvement, the roughness value chosen was 0.12. This value is lower than existing overbank roughness but is believed to be indicative of a fully regrown improved area with a prescribed planting plan.	This alternative is expected to alleviate flood risk for 7 of 15 homes with existing risk from the 100-year event, 8 of 8 homes from the 25-year event, and 2 of 2 homes from the 10-year event.
18	Non-structural improvements - Buyout of homes in the 25-year floodplain. This alternative itemizes the homes inundated in the 25 year fully developed floodplain. The existing (pre-project) conditions simulation of the 25-year fully developed storm is used to determine homes at risk of flooding in this alternative.	Terrain model based on the on the ground survey by Zamora	Roughness distribution determined during the existing hydraulic model calibration process	8 homes have expected inundation in the fully developed 25-year event.

No.	Description	Terrain Input	Roughness Input	Output
3A	25-year Engineered Channel - 25-yr storm runoff to stay within channel banks. This alternative uses a more direct alignment than the existing channel and a basic trapezoidal shape.	Terrain model based on the on the ground survey by Zamora. This surface was amended to include a trapezoidal channel that somewhat follows the existing channel but does intersect the existing channel several times. The trapezoidal channel has a bottom width of 25' and 3:1 side slopes.	In areas of proposed channel improvement, the roughness value chosen was 0.06. This is the expected roughness of non-frequently mowed native grasses.	This alternative is expected to alleviate flood risk for 10 of 15 homes with existing risk from the 100-year event, 8 of 8 homes from the 25-year event, and 2 of 2 homes from the 10-year event.
2B	25-year Natural Channel – 25-year storm runoff to stay within channel banks. This alternative limits improvements to areas outside of the WOTUS to minimize permitting requirements.	This design alternative uses the surveyed channel as a baseline with improved benches of varying width. Similar to other natural channel alternatives, benching beings a minimum of two feet above the existing channel flow line.	In areas of proposed channel improvement, the roughness value chosen was 0.12. This value is lower than existing overbank roughness but is believed to be indicative of a fully regrown improved area with a prescribed planting plan.	This alternative is expected to alleviate flood risk for 15 of 15 homes with existing risk from the 100-year event, 8 of 8 homes from the 25-year event, and 2 of 2 homes from the 10-year event.
1C	Non-structural improvements - Buyout of homes in the 100-year floodplain. This alternative itemizes the homes inundated in the 100 year fully developed floodplain. The existing (pre-project) conditions simulation of the 100-year fully developed storm is used to determine homes at risk of flooding in this alternative.	Terrain model based on the ground survey by Zamora	Roughness distribution determined during the existing hydraulic model calibration process	15 homes have expected inundation in the fully developed 100- year event.
3B	100-year Engineered Channel – 100-year storm to stay within channel banks. This alternative uses a more direct alignment	Terrain model based on the on the ground survey by Zamora. This surface was amended to	In areas of proposed channel improvement, the	0 homes have finished floor elevations within

No.	Description	Terrain Input	Roughness Input	Output
	than the existing channel and a basic trapezoidal shape.	include a trapezoidal channel that somewhat follows the existing channel but does intersect the existing channel several times. The trapezoidal channel has a varying bottom width of 35' to 40' and 3:1 sideslopes.	roughness value chosen was 0.06. This is the expected roughness of non-frequently mowed native grasses.	fully developed 100- year floodplain.
2C	100-year Natural Channel – 100-year storm to stay within channel banks. This alternative limits improvements to areas outside of the WOTUS to minimize permitting requirements.	This design alternative uses the surveyed channel as a baseline with improved benches of varying width. Similar to other natural channel alternatives, benching beings a minimum of two feet above the existing channel flow line. The length of developed channel exceeds that of the 25-year natural channel.	In areas of proposed channel improvement, the roughness value chosen was 0.12. This value is lower than existing overbank roughness but is believed to be indicative of a fully regrown improved area with a prescribed planting plan.	This alternative is expected to alleviate flood risk for 15 of 15 homes with existing risk from the 100-year event, 8 of 8 homes from the 25-year event, and 2 of 2 homes from the 10-year event.
4A	25-year Channel + Floodwall – 25-year Channel Improvement + Wall	The terrain input for this alternative is identical to the 25-year natural channel design. A weir element (of sufficient height to not overtop) is provided along the left side of the channel protecting the neighborhood from floodwater.	In areas of proposed channel improvement, the roughness value chosen was 0.12. This value is lower than existing overbank roughness but is believed to be indicative of a fully regrown improved area with a prescribed planting plan.	Preliminary hydraulic modeling indicates that a flood wall with height between 2 to 5 feet will be required to provide protection from the 100-year event. This alternative is expected to alleviate flood risk for 15 of 15 homes with existing risk from the 100-year event. 0 homes have finished

No.	Description	Terrain Input	Roughness Input	Output
				floor elevations within fully developed 100- year floodplain.
5A	Flood Wall Only – No channel improvement, Wall Only.	The terrain input for this alternative is identical to the surveyed terrain. A weir element (of sufficient height to not overtop) is provided along the right side of the channel protecting the neighborhood from floodwater.	This alternative utilizes the roughness distribution determined during the existing hydraulic model calibration process.	Preliminary hydraulic modeling indicates that a flood wall with height between 2 to 8 feet will be required to provide protection from the 100-year event. This alternative is expected to alleviate flood risk for 15 of 15 homes with existing risk from the 100-year event.
1F	Flexible Design 1 – Bypass Culverts – Flexible alternative model selected by WPD. This alternative uses a trio of 12'x10' culverts that bypass flow from immediately downstream of the flooded neighborhood area directly to the north. Effectively this serves to lower the design tailwater at the downstream end of the neighborhood. Some channel improvements are provided to reduce losses parallel to Paces Mill Lane. An inline structure is included to simulate conveyance blockage that estimate the effects of a trash screening rack at the upstream headwall structure.	Terrain model based on the on the ground survey by Zamora. This surface was amended to include a include basins upstream and downstream of the bypass culverts and some widening of the existing engineering channel.	This alternative utilizes a terrain model based on the on the ground survey by Zamora. Amendments to the roughness distribution are provided in the basins upstream and downstream of the culverts reflecting riprap lining. The engineered channel roughness is designated as 0.06 to reflect inconsistently maintained native grasses.	There are widespread flood extents but 0 homes have finished floors within the proposed floodplain.

No.	Description	Terrain Input	Roughness Input	Output
2F	Flexible Design 2 – Reduced Manning's 'n' – no structural changes – Flexible alternative model selected by WPD. This alternative uses reduced roughness values that reflect regular maintenance of the channel and overbanks. This would be accomplished with regular mowing and pruning of flood-prone areas in the tributary.	Terrain model based on the ground survey by Zamora.	To reflect maintenance such as regular mowing and pruning of the floodplain, the channel bottom roughness is designated as 0.07 and overbank roughness is designated as 0.09. This is reflected in the entire roughness distribution but actual maintained limits should be limited to the proposed flood extents.	This alternative is expected to alleviate flood risk for 6 of 15 homes with existing risk from the 100-year event, 1 of 8 homes from the 25-year event, and 2 of 2 homes from the 10-year event.
3F	Flexible Design 3 – Hybrid 100-Year Engineered Channel – Flexible alternative model selected by WPD. This alternative uses conveyance improvements as outlined in the 100-year engineered channel alternative and adds channel benching in locations between the existing and proposed channel valleys.	This alternative utilizes a terrain model based on the on the ground survey by Zamora. This surface was amended to include a trapezoidal channel that somewhat follows the existing channel but does intersect the existing channel several times. The trapezoidal channel has a varying bottom width of 35' to 40' and 3:1 side slopes. Benching is provided at 2' above the proposed channel flowline.	In areas of proposed channel improvement, the roughness value chosen was 0.06. This is the expected roughness of non-frequently mowed native grasses.	0 homes have finished floor elevations within fully developed 100- year floodplain.

8.2.2 Matrix Results

The proposed alternatives generally have similarities to one another in concept such as natural channel, engineered channel, and floodwall. In this exercise using a design standard of 'within channel banks' may have produced some designs beyond what is necessary to serve the neighborhood if removing homes' finished floor from the floodplain is a more realistic goal. If this is the realized goal, then the 'overdesigned' scenarios may seem excessive in scope and cost. This assessment is in alignment with the provided matrix results (Appendix H).

8.2.3 Recommended Alternatives

The alternatives that were recommended for further study for the primary analysis are described in Table 23. See Appendix D for schematic drawings of the proposed improvements and Appendix E for inundation extent exhibits.

Alternative	Description
3B – 100-year Engineered Channel	This is tied for third highest scoring alternative in the matrix (70) with a lower cost and providing the highest level of service. This alternative is <i>recommended</i> for further analysis.
3F – 100-year Hybrid Channel	This is tied for third highest scoring alternative in the matrix (70) with a lower cost and providing the highest level of service. This alternative is recommended for further analysis. The 100-year engineered channel is expected to be less expensive than the hybrid channel, however proposed benching adds some potential environmental improvement possibilities.
2A – 10-year Natural Channel	Most presented alternatives rely on using park land for conveyance improvements. This use of land may be considered an intrusion and may be undesired. Regardless of score if a conveyance improvement is desired it may be prudent or even beneficial to pursue a project that shares goals of both Watershed Protection and Parks departments. Given the uncertainty of other parties this alternative is recommended provisionally for further analysis.
1B – Buyout of Homes in the 25-year Floodplain	This is the highest scoring alternative resulting from the scoring matrix (77). Although this may be unappealing to residents in the neighborhood it is expected to be both cost effective and effective in reducing homes at risk to flooding. This alternative is recommended for further analysis.

Table 23. Primary Analysis Recommended Alternatives

8.3 SECONDARY ANALYSIS

The Secondary Analysis phase of the preliminary engineering study of flooding in the Paces Mill Tributary adds refined analyses to three alternatives identified in the Primary Analysis phase and analyzes potential adverse impacts on the tributary and Onion Creek. The proposed 10-Year Natural Channel design has minimal impact on flood storage and flow within the tributary. Thus, this design is considered feasible with minor alteration to the channel design. The 100-Year Engineered Channel and 100-Year Hybrid Channels both substantially reduce flood storage within the channel and increase flow in the channel.

Both designs would be classified as adverse impacts per COA ECM 1.7 requirements. The 100-Year Engineered Channel and 100-Year Hybrid Channel proposed designs would require significant design changes to become compliant with COA ECM.

8.3.1 Introduction

From the primary alternative analysis phase, a total of three alternatives were selected for further analysis. The selected alternatives were the 100-Year Level of Service Engineered Channel, the 100-Year Level of Service Hybrid Engineered/Natural Channel, and the 10-Year Level of Service Natural Channel. In this memorandum, they are referred to simply as the engineered, hybrid, and natural channel alternatives, respectively. Proposed design schematics are provided in Appendix I.

This secondary phase of analysis aims to understand the potential adverse impacts of the selected alternatives. Statements of project impacts are defined by the City of Austin (COA) Watershed Protection Department's (WPD) No Adverse Impacts Guidelines document dated December 11, 2017. The provisions of the document that apply in this case are two: first is that there shall be no increases in water surfaces caused by the project, this can be observed in a hydraulic model as producing no rise, or alternatively can be assumed negligible if flow changes vary by less than 1% as a result of the project. The second provision is that the project shall cause no net reduction in flood storage.

A 1D hydraulic model was utilized to determine the change in channel storage. The channel storage table in the hydrologic model was updated based upon the results from the 1D hydraulic model. The 1D steady hydraulic analyses were developed to duplicate output of 2D hydraulic analysis results including water surface elevation, velocity, reach length, and channel storage.

8.3.2 Refinements to Hydraulic Alternatives

Refinements were made to the Engineered Channel and Hybrid Channel alternatives to best align with the findings of the geomorphic assessment of the channel. Both the engineered and hybrid channel in the primary analysis phase proposed a trapezoidal shaped cross section with a bottom width of approximately 35' as primary conveyance throughout proposed reach sections 2 and 3. However, it was theorized that the proposed improvements would ultimately lead to channel instability within the improved reaches due to high channel slope. Grade control structures (channel drops) were added to the channel design to reduce the channel slope to match the stable downstream channel slope. The natural channel alternative remains unaltered from the primary analysis as the bank-full channel is to remain unchanged and the existing channel is stable per the Geomorphic Assessment.

The revised engineered channel alternative will have a bottom width of 25 feet with benches of varying widths and starting 2 feet above the proposed flowline of the channel. Since significant reach length is proposed to be removed, multiple drops along the new engineered channel are proposed to provide a stable slope of approximately 0.6%.

Similar to refinements made to the engineered channel, the hybrid channel, which consists of a proposed engineered section to replace the existing engineered channel section that runs parallel to Paces Mill Lane (Subreach 2 in Geomorphic Assessment). The proposed engineered channel is trapezoidal with a bottom width of 20 feet with varying bench widths and includes multiple drop structures for grade control. Downstream of the existing engineered section the natural bank-full channel is proposed to remain with secondary conveyance improvements along the overbank leaving the natural channel untouched.

Proposed design schematics are provided in Appendix I. Proposed design inundation extents are provided in Appendix J. Proposed design cost estimates are provided in Appendix K.

The current plans for 2D hydraulic models are:

- Existing Conditions
 - o KFA_ULT2D_Frequency_2Yr
 - o KFA_ULT2D_Frequency_10Yr
 - o KFA_ULT2D_Frequency_25Yr
 - o KFA_ULT2D_Frequency_100Yr
- Hybrid Design
 - o KFA_Secondary_Hybrid_2Yr
 - KFA_Secondary_Hybrid_10Yr
 - KFA_Secondary_Hybrid_25Yr
 - KFA_Secondary_Hybrid_100Yr
- Engineered Channel
 - KFA_Secondary_EngChan_2Yr
 - KFA_Secondary_EngChan_10Yr
 - KFA_Secondary_EngChan_25Yr
 - KFA_Secondary_EngChan_100Yr
- Natural Channel
 - o KFA_10YrNatChan_2Yr
 - o KFA_10YrNatChan_10Yr
 - KFA_10YrNatChan_25Yr
 - o KFA_10YrNatChan_100Yr

8.3.3 Process for Development of 1D Hyraulic Models

Development of 1D parameters is primarily driven by the output of the 2D models. Duplication of the results from the 2D models is the primary objective. Each 1D modeling component is discussed further below:

- Input
 - o Geometry file
 - Reach Alignment
 - Reach alignments follow the flowline of the primary conveyance course, existing or proposed.
 - Bank Stations
 - Bank stations generally occur approximately 2 feet above the channel flowline. This bank height does vary in natural channel areas. In proposed channel sections banks and benches are proposed to be 2 feet above the proposed flowline.
 - Overbank Lengths
 - Overbank lengths are controlled by the flow paths lines visible in RAS Mapper. These flowpaths generally include the majority of conveyed flow.
 - Cross section locations
 - Cross section always follow 2D hydraulic grade contours and their locations were chosen with a few objectives in mind:
 - Isolate each subreach for comparison purposes and provide locations for station equations for results comparison.

- Provide cross sections at locations of substation channel variation to best capture volumetric variation within the channel.
- Provide cross sections at locations of hydraulic grade inflection. By varying roughness values at these locations hydraulic grade lines are duplicated.
- Roughness
 - Roughness values input into the 1D cross sections initially matched those of the 2D models. These values were scaled across each entire cross section in order to replicate 2D results. 1D maximum roughness values of 0.12 and 0.24 are used for in-bank and overbank locations respectively.
- Lateral structures
 - There is some lateral discharge from the basin expected near existing channel cross section 1445 where some runoff is expected to overflow into the basins west of the project reach and not return to the system. Flow loss at this location is characterized using a lateral weir structure, and flows removed using a flow discharge equation based on 2D model results.
 - There is a mined-out area serving as a storage area at approximately existing channel cross section 800. In larger events this area will inundate and has the potential to cascade back into the channel at approximately existing channel cross section 200. Because the analysis was done using steady state hydraulics this phenomenon cannot be well modeled, and for simplicity lateral flow at this location is ignored. This is not believed to substantially change the outcome of the analysis.
- Ineffective areas
 - Ineffective areas are largely subjective, in locations where flow velocity is negligible or transverse to the reach, or where backwater locations may be located.
- o Flows
 - Flows used in this analysis are ultimate flows based on HMS modeling done prior to the primary analysis and are reflective of improvements expected at Thaxton Road.
 - These are HMS node flows and not flows from 2D model results. No iterations have been performed to minimize discrepancies between output 1D hydraulic grade lines and varied flows based on hydrologic model output (discussed later). Discrepancies are expected to be minimal and generally smaller than what would be deemed an acceptable match between 1D and 2D results.

The current plans for 1D hydraulic models are:

- KFA_Secondary1D_Existing
- KFA_Secondary1D_Hybrid
- KFA_Secondary1D_EngChan
- KFA_Secondary1D_NatChan

8.3.4 1D Hydraulic Model Results

The 1D hydraulic model serves two purposes in this Secondary Analysis. First purpose is determining flood storage within each alternative. Second purpose is the 1D hydraulic model provides information about the storage discharge relationship of the channel in a hydrologic model. Hydrologic parameter development is discussed in depth in the following section. Storage results for each alternative are included in Figure 13. (Note: results are based on the subreaches identified in the Geomorphic Assessment.)

		Subreac		
Subreach 1	Tota	I Subreach	Storage (
Return Event	Ex	Hybrid	Eng	Natura
2-Yr	18.37	18.18	18.57	18.08
10-Yr	23.07	22.7	23.07	22.63
25-Yr	55.03	55.23	56.07	54.67
100-Yr	59.11	58.05	58.9	58.53
Subreach 2	Tota	al Subreach	Storage (ac-ft)
Return Event	Ex	Hybrid	Eng	Natural
2-Yr	9.04	4,6	3.46	9.58
10-Yr	22.33	8.64	7.2	23.37
25-Yr	34.85	16.53	18.95	34.98
100-Yr	48.65	21.67	23.15	46.53
Subreach 3	Tota	al Subreach	Storage (ac-ft)
Return Event	Ex	Hybrid	Eng	Natural
2-Yr	4.39	4.08	3.19	5.62
10-Yr	9.95	7.99	6.28	11.88
25-Yr	15.72	10.48	8.38	16.35
100-Yr	24.1	14.94	11.86	23.55
Subreach 4	Tota	al Subreach	Storage (ac-ft)
Return Event	Ex	Hybrid	Eng	Natural
2-Yr	11.29	10.64	11.85	12.58
10-Yr	27.56	25.55	27.76	29.36
25-Yr	37.65	35.12	37.47	39.21
100-Yr Total Project	52.1	48.37	50.94	52.61
Return Event	Ex	1		Natural
		Hybrid	Eng	
2-Yr	43.09	37.5	37.07	45.86
10-Yr	82.91	64.88	64.31	87.24
25-Yr	143.25	117.36	120.87	145.21
100-Yr	183.96	143.03	144.85	181.22

		nge in Subr	cucii sto	lage		
Subreach 1	Proposed Change in Subreach Storage (ac-ft)					
Return Event	Ex	Hybrid	Eng	Natural		
2-Yr	0	-0.19	0.2	-0.29		
10-Yr	0	-0.37	0	-0.44		
25-Yr	0	0.2	1.04	-0.36		
100-Yr	0	-1.06	-0.21	-0.58		
Subreach 2	Proposed	d Change in Su	ibreach Stor	rage (ac-ft)		
Return Event	Ex	Hybrid	Eng	Natural		
2-Yr	0	-4.44	-5.58	0.54		
10-Yr	0	-13.69	-15.13	1.04		
25-Yr	0	-18.32	-15.9	0.13		
100-Yr	0	-26.98	-25.5	-2,12		
Subreach 3	Proposed	d Change in Su	breach Stor	rage (ac-ft)		
Return Event	Ex	Hybrid	Eng	Natural		
2-Yr	0	-0.31	-1.2	1.23		
10-Yr	0	-1.96	-3.67	1.93		
25-Yr	0	-5.24	-7.34	0.63		
100-Yr	0	-9.16	-12.24	-0.55		
Subreach 4	Proposed	d Change in Su	ubreach Stor	rage (ac-ft)		
Return Event	Ex	Hybrid	Eng	Natural		
2-Yr	0	-0.65	0.56	1.29		
10-Yr	0	-2.01	0.2	1.8		
25-Yr	0	-2.53	-0.18	1.56		
100-Yr	0	-3.73	-1.16	0.51		

Figure 13. 1D Hydraulic Model Storage Results

Refer to Appendix K for hydraulic model output.

8.3.5 Hydrologic Model Development

The hydrologic model's purpose in this Secondary Analysis is to identify any loss in channel storage and determine if there are any increases in discharge from the project reach. This analysis was performed by revising the Modified Puls reach routing parameters in the hydrologic model based upon the channel storage results in the 1D hydraulic model. This was limited to adjusting storage discharge relationships only, no adjustments were made to model reach element subreach counts. Estimates for reach storage discharge relationships for improved areas are derived from the 1D hydraulic model. Hydrologic model reach elements RLOCR350B and RLOCR350C represent the improved reaches in the hydrologic model. The relationships that were derived are shown in Figure 14.

			Reach RI	OCR350C			
Existing	(STA 2761-0)	Hybrid	(STA 2779-0)	EngChan	(STA 2384 - 0)	NatChan	(STA 2761-0)
Storage (ac-ft)	Flow (cfs)	Storage (ac-ft)	Flow (cfs)	Storage (ac-ft)	Flow (cfs)	Storage (ac-ft)	Flow (cfs)
0	0	0	0	0	0	0	0
1.92	30	1.64	30	1.68	30	1.97	30
2.8	50	2.42	50	2.34	50	2.89	50
4,18	110	3.53	110	3.02	110	4.59	110
6.92	220	5.98	220	4.83	220	7.25	220
14.15	550	11.27	550	9.6	550	14.91	550
25.11	1090	18.09	1090	16.09	1090	27.25	1090
57.67	2720	35.86	2720	32.54	2720	59.61	2720
68.89	3260	41.78	3260	37.93	3260	69.31	3260
78.58	3810	47.84	3810	43.6	3810	78.36	3810
95.31	4770	57.6	4770	53.69	4770	93.79	4770
118.45	6100	72.59	6100	69.25	6100	115.75	6100
134.11	6700	79.59	6700	77.04	6700	129.43	6700
Existing	(STA 4361-2761)	Hybrid	Reach Ri (5TA 4179-2779)	LOCR350B EngChan	(STA 3783-2384)	NatChan	(STA 4361 - 276
Storage (ac-ft)	Flow (cfs)	Storage (ac-ft)	Flow (cfs)	Storage (ac-ft)	Flow (cfs)	Storage (ac-ft)	Flow (cfs)
0	0	0	0	0	0	0	0
0.9	30	0.88	30	0.94	30	1.05	30
1.32	50	1.28	50	1.38	50	1.53	50
2.35	110	2.27	110	2.47	110	2.67	110
4.01	220	3.79	220	4.18	220	4.53	220
9.53	550	9.16	550	10.2	550	11.19	550
18.21	1090	17.17	1090	19.16	1090	20.79	1090
10.21	1030	17.17	1090	19.10	1050	20.79	1090

Figure 14. Hydrologic Model Relationships

41.46

47.71

54.25

65.25

79.37

85.3

2720

3260

3810

4770

6100

6700

46.43

53.87

61.1

73.84

89.93

96.91

2720

3260

3810 4770

6100

6700

2720

3260

3810

4770

6100

6700

This input was developed using the following HEC-RAS plans:

39.1

45.73

52.69

63.79

78.2

84.34

KFA_Secondary_Routing_Existing •

2720

3260

3810

4770

6100

6700

43.97

52.04

59.9

74

92.99

101.19

- KFA Secondary Routing Hybrid •
- KFA Secondary Routing EngChan •
- KFA_Secondary_Routing_NatChan

8.3.6 Hydrologic Model Results

HEC-HMS node element JLOCR350C is the node immediately downstream of the reaches being improved. It is also the most downstream element in the Paces Mill Tributary and is at the confluence with Onion Creek. It is also the limit of the impacts analysis. No watershed-wide timing based analysis has been performed. The flow change impacts are tabulated in Figure 15.

	FI	LOW (cfs)		
Return Event	2-Year	10-Year	25-Year	100-Year
Existing	734	1847	2642	3999
Hybrid	760	1950	2791	4165
EngChan	754	1953	2795	4179
NatChan	718	1844	2644	4042
	TOTAL FLO	OW CHANG	GE (cfs)	
Return Event	2-Year	10-Year	25-Year	100-Year
Existing	0.0	0.0	0.0	0.0
Hybrid	25.7	103.3	148.8	166.2
EngChan	20.0	105.9	152.3	180.1
NatChan	-16.0	-2.5	2.0	42.7
	TOTAL FL	OW CHAN	GE (%)	
Return Event	2-Year	10-Year	25-Year	100-Year
Existing	0.0	0.0	0.0	0.0
Hybrid	3.4	5.3	5.3	4.0
EngChan	2.7	5.4	5.4	4.3
NatChan	-2.2	-0.1	0.1	1.1

Figure 15. Hydrologic Flow Change Impacts

Refer to Appendix L for hydrologic model output.

8.3.7 Paces Mill Reach Results + Conclusions

Both the proposed engineered channel and hybrid channel designs appear to cause substantial reduction in channel storage during all evaluated storm events. These deficits are relatively large making these two designs not compliant with COA No Adverse Impacts Guidelines within the Paces Mill Tributary. The natural channel design does improve flood storage in the 2, 10, and 25-Year events and shows a rather small deficit in the 100-Year event. This indicates that the Natural Channel design may need only minor refinement to meet COA No Adverse Impacts Guidelines when considering storage requirements.

Simulations show there are significant flow increases that would be expected when considering both the hybrid and engineered alternatives. Flow increases in the tributary are expected to exceed 5 percent in some storm events. These flows, however, do not pose significant adverse impacts to Onion Creek. The natural channel alternative, again, appears to perform much more favorably, producing close to net-neutral flow changes.

8.3.8 Project Mitigation Options

Two major components of concern when implementing any of the outlined alternatives are the overall potential impacts of the project on the watershed as discussed in the Results Conclusions Section and the local effects of the improvements ensuring they are properly integrated into the existing reach where localized issues could occur.

The Reach Results Conclusion section above outlines that the Natural Channel design has a minimal effect on the reach while the Engineered Channel and Hybrid Channel Alternatives would both have some local impacts within the reach. Increases in conveyance capability typically lead to loss of storage and increased flows downstream. The loss of storage in the Paces Mill Tributary itself is not of particular concern to the tributary itself, as current storage manifests itself as yard and structure flooding which is

undesired. The loss of storage is only of critical consequence when viewing increased flows and flood depths in Paces Mill Tributary and in Onion Creek.

Adverse impacts guidelines state that increased water surface elevations as a result of impacts can be mitigated by containing widened floodplains within a drainage easement. This is a viable solution to expected rise-related impacts within the reach. Exhibits showing what easements would be required to contain expected widened floodplains in the Paces Mill Tributary are provided in Appendix N.

Impacts of the project on the main stem Onion Creek have been assessed by Watershed Protection Department, and implementation of any of the alternatives on the main stem of Onion Creek are minimal, producing expected variations in flow of less than 0.01%. Tabulated below are the expected changes in flow at JLOCR310_350 and JLOCRT360_390, which correspond to the confluence of the Paces Mill Tributary and the main stem of Onion Creek, and Onion Creek at East William Cannon Road respectively.

				Compute	d Peak Flow	at HMS Elen	nent (cfs)			
ONI Design Storm		JLOCR310 350				JLOCR360_390				
(Pre-Atlas 14)	REG	Pre-Project	Hybrid	Engineered	Natural	REG	Pre-Project	Hybrid	Engineered	Natural
SC FD 025YR	58,429	58,563	58,557	58,557	58,568	58,334	58,469	58,463	58,463	58,474
SC FD 100YR	108,407	108,631	108,617	108,618	108,642	108,416	108,641	108,628	108,628	108,652
SC EX 500YR	164,872	165,070	165,054	165,055	165,083	164,769	164,969	164,953	164,954	164,982
				_	Percent	hange (%)				
ONI Design Storm		JL	OCR310_35	0			JL	OCR360_39	0	
(Pre-Atlas 14)	REG	Pre-Project	Hybrid	Engineered	Natural	REG	Pre-Project	Hybrid	Engineered	Natural
SC FD 025YR	N/A	0.23%	-0.01%	-0.01%	0.01%	N/A	0.2%	-0.01%	-0.01%	0.01%
SC FD100YR	N/A	0.21%	-0.01%	-0.01%	0.01%	N/A	0.2%	-0.01%	-0.01%	0.01%
SC EX 500YR	N/A	0.12%	-0.01%	-0.01%	0.01%	N/A	0.1%	-0.01%	-0.01%	0.01%
	<u> </u>		Ne	t Change of Co	omputed Pe	ak Flow at H	MS Element (cf	s)		-
ONI Design Storm		Л	OCR310_35	0			JL	OCR360_39	0	A.A
(Pre-Atlas 14)	REG	Pre-Project	Hybrid	Engineered	Natural	REG	Pre-Project	Hybrid	Engineered	Natural
SC FD 025YR	N/A	134	-6	-6	5	N/A	135	-6	-6	5
SC FD100YR	N/A	224	-14	-13	11	N/A	225	-13	-13	11
SC EX 500YR	N/A	198	-16	-15	13	N/A	200	-16	-15	13

Implementing any of the three proposed alternatives within the tributary does have the ability to hydraulically affect subreaches at the upstream and downstream ends of the improvements. These local hydraulic changes can potentially include increased velocities which may be of significance to the long-term stability of the reach. Analyses were performed to map expected velocity changes due to each alternative. These exhibits are provided in Appendix J and show some expected increases at tie in locations; typically, of less than 2 feet per second in the 2-year storm event. Mitigation of increased velocities, particularly at transitions between existing channel reach segments and improved segments warrant further analysis for stability or alterations to tie in design including armoring of transition areas.

9 SCHEMATIC DESIGN OF HYBRID OPTION

9.1 PERMITTING

Permitting for the hybrid design option would require local and federal review and approval. The project location is within the City of Austin's Full Purpose Jurisdiction. Prior to construction, the project shall need to obtain a site development permit or a general permit from the City of Austin. Due to the proposed modifications of the channel within the Critical Water Quality Zone (CWQZ), the project will require a variance from the land development code (LDC). The project would not be able to utilize the general permit program if a variance from LDC is required.

For the site development permit, the project will need to show the construction within the Erosion Hazard Zone (EHZ) will not cause erosion and the stream and banks will be stable. For the construction within the 100-year floodplain and the CWQZ, the project will need to provide a Functional Assessment of Floodplain Health along with a Riparian Restoration Plan.

The project is located within the Onion Creek Metropolitan Park. The project will need to obtain approval from COA Parks and Recreation Department (PRD) prior to site development permit approval.

A portion of the proposed improvements are within the Ordinary High Water Mark (OHWM) of the Paces Mill Tributary which defines the boundary of waters of the U.S. for the tributary. The project will require authorization under Section 404 of the Clean Water Act. It is anticipated that Nationwide Permit 43 which allows for expansion or construction of stormwater management facilities that do not cause the loss of greater than 0.5 acres of waters of the U.S could be used for this project. However, mitigation may be required by the U.S. Army Corps of Engineers (USACE) for impacts to the channel in excess of 0.03 acres as a condition of the Nationwide Permit.

The project is located within the defined FEMA floodplain for Paces Mill Tributary. Channel and overbank modifications within the FEMA floodplain will require a Letter of Map Revision to reflect changes within the floodplain.

9.2 COST ESTIMATES

For the schematic design of the Hybrid option, the Engineer's Opinion of Construction Costs (EOCC) for the project to be constructed is estimated to be \$6.5 million. The costs include channel excavation, channel stabilization, erosion control, tree removal and mitigation, and mobilization. The estimated engineering cost for the design and permitting of the project is \$1 million. Refer to Appendix O for Hybrid Channel Schematic Design EOCC.

9.3 CONSTRUCTABILITY

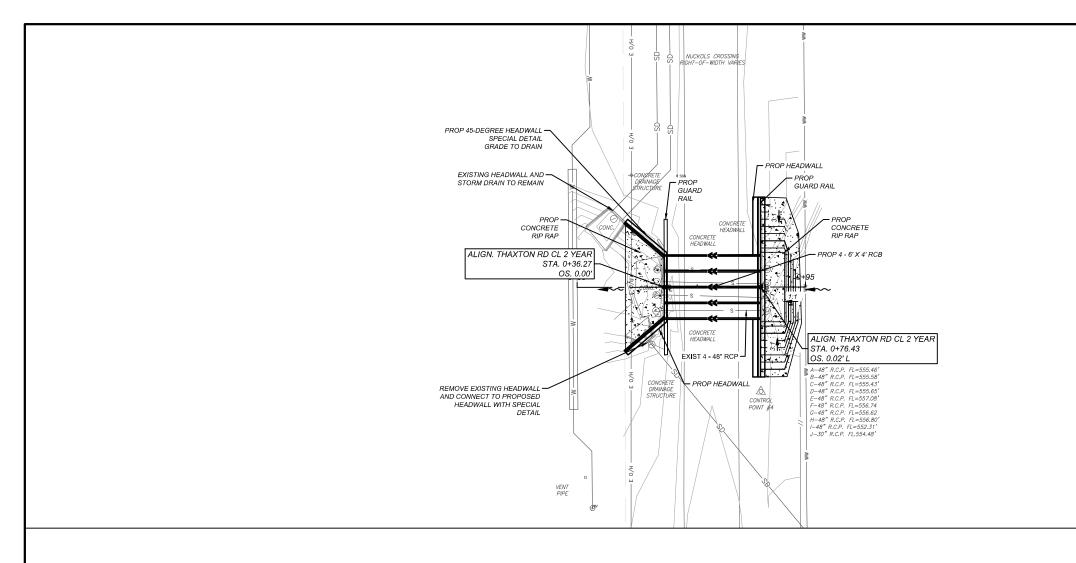
Construction of the proposed improvements for the hybrid option will require access through the neighborhood to the creek. The project includes two access points at the ends of the project, upstream and downstream. Construction will include excavation and removal of materials. Spoils from the excavation will need to be removed from the project area and stored outside of the floodplain. Due to the proximity of the project to a neighborhood, hours of operation would be limited to daytime hours. The project location should be far enough from home foundations to not impact them; however, seismic activity may be measured during construction for homeowner confidence. The project is located upstream of environmentally sensitive features located near the confluence of Paces Mill Tributary with Onion Creek. Sediment and erosion control during construction will need to be continually checked and maintained in proper working order.

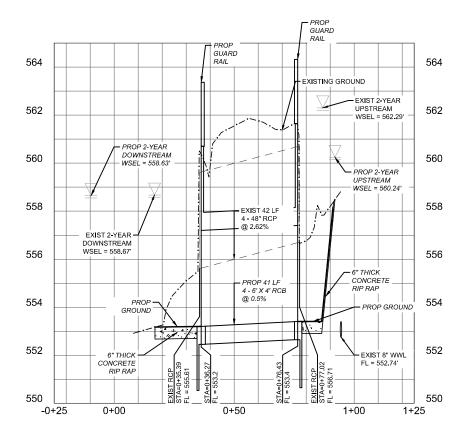
9.4 MAINTENANCE REQUIREMENTS

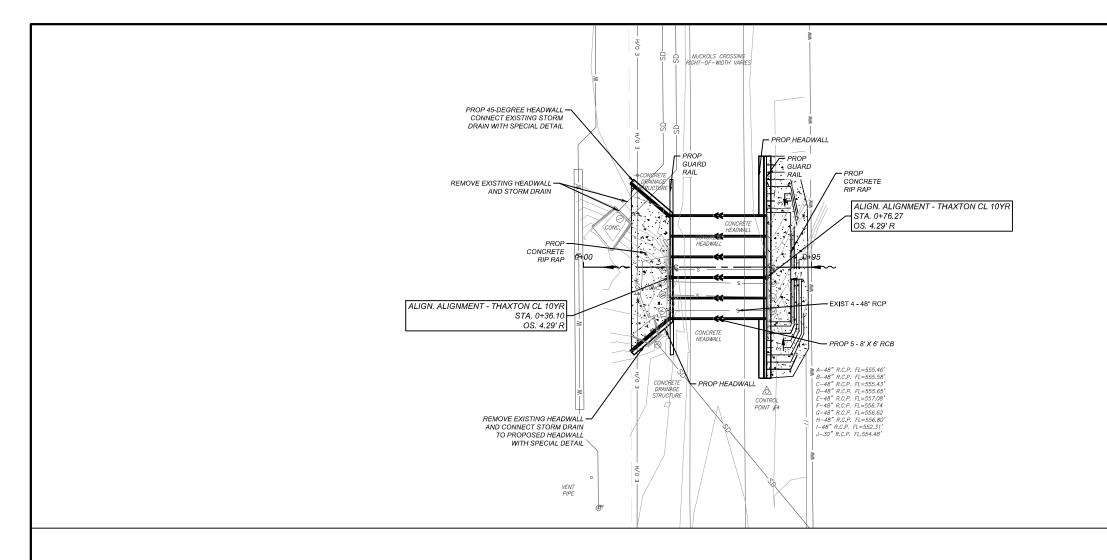
The hybrid option assumes continual maintenance to control vegetation in order to meet the Manning's 'n' values for the bench areas at 0.06. The bench areas should be mowed occasionally to prevent establishment of brush and trees in the bench areas, but regular mowing is not required.

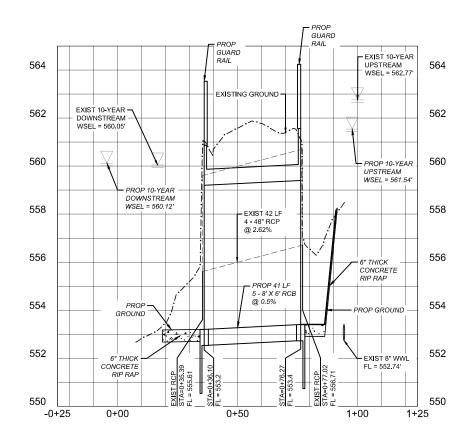
9.5 ENVIRONMENTAL IMPACT

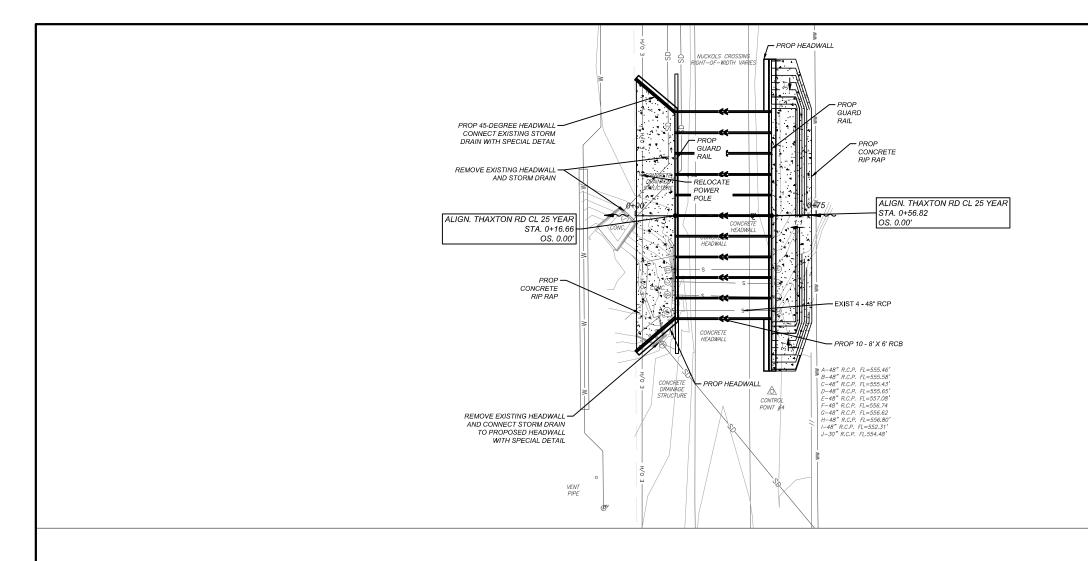
HDR analyzed the proposed hybrid design using Texas Rapid Assessment Method (TXRAM) developed by USACE (Environmental Memo). Since the proposed improvements for the hybrid design would be above the existing channel thalweg except in the existing engineered section, the impact of the project is isolated to the riparian buffer of the Paces Mill Tributary. The project would result in fill below the OHWM of the existing channel were the engineered section approaches the natural channel. The hybrid design option scored slightly lower than the existing channel TXRAM score for three of the five segments.

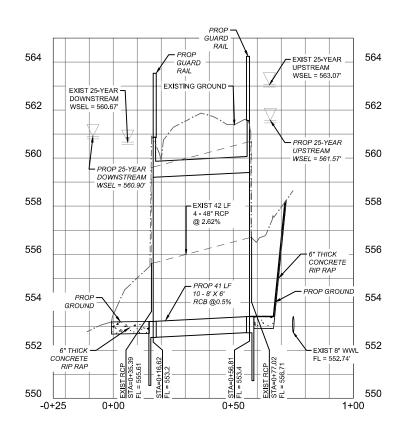

No mapped critical habitat for any of the federally listed endangered or threatened species are within or near the project area. There are no documented occurrences of any state listed threatened or endangered species within the proposed project area.

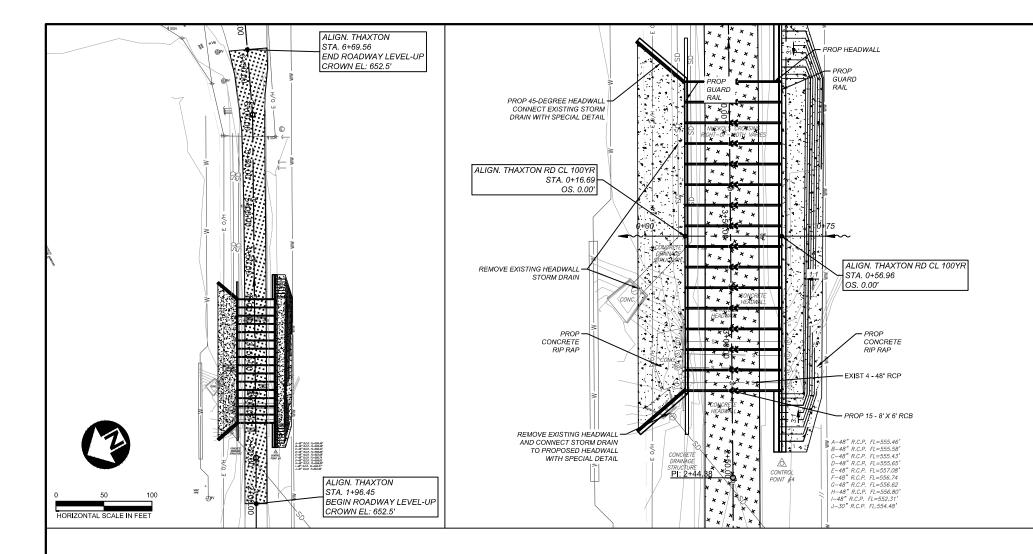

Construction of the project would be within the CWQZ for the channel. Impact to the CWQZ should be mitigated by revegetating in accordance with COA's ECM. The project will also require tree mitigation for existing trees to be removed for construction of the channel improvements and construction activities. No Critical Environmental Features (CEF) were identified within the project area; however, a few CEFs were identified downstream of the project and would need to be protected from construction activities.

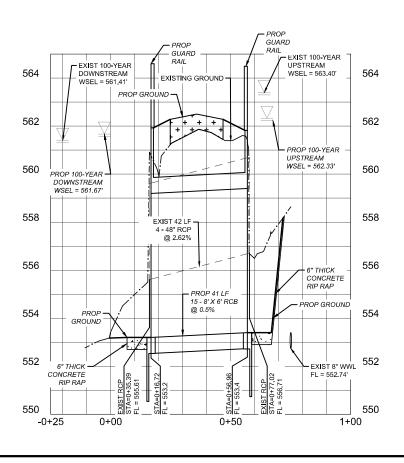

Appendix A: Thaxton Road Improvement Schematics






20 40 DORIZONTAL SCALE IN FEET	THIS DOO FOR THE I RHE PAUL IT IS NC CONSTR	UMENT IS F PURPOSE OL EVIEW UNDE AUTHORITY SHATTUCK I.C. # 129381 05/19/2021. IT TO BE USI JCTION, BID MIT PURPOS	ELEASED TINTERIM R OF P.E. ED FOR DING OR
0 2 4 VERTICAL SCALE IN FEET	PACES MILL FLOOD RISK REDUCTION STUDY	THAXTON ROAD IMPROVEMENTS	2-YEAR LEVEL-OF-SERVICE DESIGN
	NOTES SURVEY E DRAWN B DESIGNED CHECKED REVIEWED	Y BY BY	*****




20 40 DISCONTAL SCALE IN FEET	THIS FOR IT	i DOCI THE P RE' THE J PAUL LI IS NOT	LIMENT IS URPOSE VIEW UNI AUTHORI SHATTUC CIC. # 1293 D5/19/202 F TO BE U ICTION, B AIT PURP	RELEA OF INTE DER TY OF X, P.E. 81 1. SED FO IDDING	SED RIM
0 20 40 VERTICAL SCALE IN FEET	PACES MILL FLOOD RISK	REDUCTION STUDY	THAXTON ROAD IMPROVEMENTS	10-YEAR LEVEL-OF-SERVICE	DESIGN
	SUR DRA DESIG	DTES VEY B WN BY SNED E KED E WED F	NAM Y		ATE

20 40 HORIZONTAL SCALE IN FEET	NOLLAR SOUND STATE S
0 20 40 VERTICAL SCALE IN FEET	PACES MILL FLOOD RISK REDUCTION STUDY THAXTON ROAD IMPROVEMENTS 25-YEAR LEVEL-OF-SERVICE DESIGN
	NOTES NAME DATE SURVEY BY DRAWN BY DESIGNED BY CHECKED BY REVIEWED BY

20 40 HORIZONTAL SCALE IN FEET	THIS FOR	DOCU THE P THE / PAUL : UI S NOT	LIMIN JMENT IS URPOSE - VIEW UNE AUTHORI SHATTUC C. # 1293 J5/19/2021 TO BE U CTION, BE U CTION, BE U CTION, BE U	RELEA: DF INTE DER IY OF K, P.E. 31 SED FO DDING	SED RIM
0 20 40 VERTICAL SCALE IN FEET	PACES MILL FLOOD RISK	REDUCTION STUDY	THAXTON ROAD IMPROVEMENTS	100-YEAR LEVEL-OF-SERVICE	DESIGN
	SUR DRA DESIG	OTES VEY BY WN BY SNED E	NAM (' 3Y Y		ATE

Appendix B: Thaxton Road Engineer's Opinion of Probable Cost (OPC)

BID ITEM NO.	ITEM DESCRIPTION	UNIT	QTY.	UNIT COST	TOTAL COST
101S-B	PREPARING RIGHT OF WAY	STA	1	\$ 10,000.00	\$ 10,000.00
111S-A	EXCAVATION	CY	437	\$ 50.00	\$ 21,870.00
210S-A	FLEXIBLE BASE	СҮ	21	\$ 100.00	\$ 2,100.00
340S-B3	HOT MIX ASPHALTIC CONCRETE PAVEMENT, 3 INCHES, TYPE C	SY	63	\$ 50.00	\$ 3,150.00
414S-C	CAST-IN-PLACE PORTLAND CEMENT CONCRETE RETAINING WALL, INCLUDING REINFORCEMENT	CY	37	\$ 1,500.00	\$ 55,800.00
430S-B	P.C. CONCRETE CURB AND GUTTER (FINE GRADING)	LF	54	\$ 50.00	\$ 2,700.00
509S-1	TRENCH EXCAVATION SAFETY PROTECTIVE SYSTEMS, (ALL DEPTHS)	LF	168	\$ 10.00	\$ 1,680.00
559S-6X4	PRECAST CONCRETE BOX CULVERTS, 6 FT X 4 FT	LF	168	\$ 600.00	\$ 100,800.00
559S-8X6	PRECAST CONCRETE BOX CULVERTS, 8 FT X 6 FT	LF	0	\$ 800.00	\$ -
591S-A	DRY ROCK RIPRAP, D50 = 18 IN	SY	0	\$ 130.00	\$
591S-F	CONCRETE RIPRAP, 6 IN	SY	238	\$ 300.00	\$ 71,400.00
605S	SOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE	SY	64	\$ 10.00	\$ 644.44
639S	ROCK BERM	LF	29	\$ 45.00	\$ 1,305.00
641S	STABILIZED CONSTRUCTION ENTRANCE	EA	2	\$ 3,500.00	\$ 7,000.00
642S	SILT FENCE FOR EROSION CONTROL	LF	150	\$ 10.00	\$ 1,500.00
700S-TM	TOTAL MOBILIZATION PAYMENT	LS	1	\$ 18,897.47	\$ 18,897.47
704	METAL BEAM GUARD RAILING	LF	300	\$ 50.00	\$ 15,000.00
704-T	METAL BEAM GUARD RAILING, TERMINAL ANCHOR SECTIONS	EA	2	\$ 1,000.00	\$ 2,000.00
802S-A	PROJECT SIGN	EA	1	\$ 1,000.00	\$ 1,000.00
803S-MO	BARRICADES, SIGNS, AND TRAFFIC HANDLING	МО	6	\$ 5,000.00	\$ 30,000.00
SS1000	COFFER DAM & SITE DEWATERING	LS	1	\$ 50,000.00	\$ 50,000.00
CONSTRUCTION SUE	BTOTAL				\$ 396,846.92
	CONTINGENCY (30% OF SUBTOTAL)				\$ 119,055.00
CONSTRUCTION COS	ST ESTIMATE				\$ 515,901.92

BID ITEM NO.	ITEM DESCRIPTION	UNIT	QTY.	UNIT COST	TOTAL COST
101S - B	PREPARING RIGHT OF WAY	STA	1	\$ 10,000.00	\$ 10,000.00
111S - A	EXCAVATION	СҮ	705	\$ 50.00	\$ 35,235.00
210S-A	FLEXIBLE BASE	СҮ	34	\$ 100.00	\$ 3,383.33
340S-B3	HOT MIX ASPHALTIC CONCRETE PAVEMENT, 3 INCHES, TYPE C	SY	102	\$ 50.00	\$ 5,075.00
414S-C	CAST-IN-PLACE PORTLAND CEMENT CONCRETE RETAINING WALL, INCLUDING REINFORCEMENT	СҮ	41	\$ 1,500.00	\$ 60,750.00
430S-B	P.C. CONCRETE CURB AND GUTTER (FINE GRADING)	LF	87	\$ 50.00	\$ 4,350.00
509S-1	TRENCH EXCAVATION SAFETY PROTECTIVE SYSTEMS, (ALL DEPTHS)	LF	210	\$ 10.00	\$ 2,100.00
559S-6X4	PRECAST CONCRETE BOX CULVERTS, 6 FT X 4 FT	LF	0	\$ 600.00	\$
559S-8X6	PRECAST CONCRETE BOX CULVERTS, 8 FT X 6 FT	LF	210	\$ 800.00	\$ 168,000.00
591S-A	DRY ROCK RIPRAP, D50 = 18 IN	SY	0	\$ 130.00	\$
591S-F	CONCRETE RIPRAP, 6 IN	SY	268	\$ 300.00	\$ 80,352.00
605S	SOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE	SY	101	\$ 10.00	\$ 1,011.11
639S	ROCK BERM	LF	46	\$ 45.00	\$ 2,047.50
641S	STABILIZED CONSTRUCTION ENTRANCE	EA	2	\$ 3,500.00	\$ 7,000.00
642S	SILT FENCE FOR EROSION CONTROL	LF	185	\$ 10.00	\$ 1,850.00
700S-TM	TOTAL MOBILIZATION PAYMENT	LS	1	\$ 23,957.70	\$ 23,957.70
704	METAL BEAM GUARD RAILING	LF	300	\$ 50.00	\$ 15,000.00
704-T	METAL BEAM GUARD RAILING, TERMINAL ANCHOR SECTIONS	EA	2	\$ 1,000.00	\$ 2,000.00
802S-A	PROJECT SIGN	EA	1	\$ 1,000.00	\$ 1,000.00
803S-MO	BARRICADES, SIGNS, AND TRAFFIC HANDLING	мо	6	\$ 5,000.00	\$ 30,000.00
SS1000	COFFER DAM & SITE DEWATERING	LS	1	\$ 50,000.00	\$ 50,000.00
CONSTRUCTION SU	BTOTAL				\$ 503,111.64
	CONTINGENCY (30% OF SUBTOTAL)				\$ 150,934.00
CONSTRUCTION COS	ST ESTIMATE				\$ 654,045.64

BID ITEM NO.	ITEM DESCRIPTION	UNIT	QTY.	UNIT COST	TOTAL COST
101S - B	PREPARING RIGHT OF WAY	STA	1	\$ 10,000.00	\$ 10,000.00
111S - A	EXCAVATION	CY	1407	\$ 50.00	\$ 70,348.50
210S-A	FLEXIBLE BASE	СҮ	68	\$ 100.00	\$ 6,755.00
340S-B3	HOT MIX ASPHALTIC CONCRETE PAVEMENT, 3 INCHES, TYPE C	SY	203	\$ 50.00	\$ 10,132.50
414S-C	CAST-IN-PLACE PORTLAND CEMENT CONCRETE RETAINING WALL, INCLUDING REINFORCEMENT	СҮ	37	\$ 1,500.00	\$ 55,200.00
430S-B	P.C. CONCRETE CURB AND GUTTER (FINE GRADING)	LF	174	\$ 50.00	\$ 8,685.00
509S-1	TRENCH EXCAVATION SAFETY PROTECTIVE SYSTEMS, (ALL DEPTHS)	LF	420	\$ 10.00	\$ 4,200.00
559S-6X4	PRECAST CONCRETE BOX CULVERTS, 6 FT X 4 FT	LF	0	\$ 600.00	\$ -
559S-8X6	PRECAST CONCRETE BOX CULVERTS, 8 FT X 6 FT	LF	420	\$ 800.00	\$ 336,000.00
591S-A	DRY ROCK RIPRAP, D50 = 18 IN	SY	0	\$ 130.00	\$
591S-F	CONCRETE RIPRAP, 6 IN	SY	405	\$ 300.00	\$ 121,485.00
605S	SOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE	SY	197	\$ 10.00	\$ 1,974.44
639S	ROCK BERM	LF	54	\$ 45.00	\$ 2,430.00
641S	STABILIZED CONSTRUCTION ENTRANCE	EA	2	\$ 3,500.00	\$ 7,000.00
642S	SILT FENCE FOR EROSION CONTROL	LF	260	\$ 10.00	\$ 2,597.00
700S-TM	TOTAL MOBILIZATION PAYMENT	LS	1	\$ 36,740.37	\$ 36,740.37
704	METAL BEAM GUARD RAILING	LF	300	\$ 50.00	\$ 15,000.00
704 - T	METAL BEAM GUARD RAILING, TERMINAL ANCHOR SECTIONS	EA	2	\$ 1,000.00	\$ 2,000.00
802S-A	PROJECT SIGN	EA	1	\$ 1,000.00	\$ 1,000.00
803S-MO	BARRICADES, SIGNS, AND TRAFFIC HANDLING	МО	6	\$ 5,000.00	\$ 30,000.00
SS1000	COFFER DAM & SITE DEWATERING	LS	1	\$ 50,000.00	\$ 50,000.00
CONSTRUCTION SUE	BTOTAL				\$ 771,547.82
	CONTINGENCY (30% OF SUBTOTAL)				\$ 231,465.00
CONSTRUCTION COS	ST ESTIMATE				\$ 1,003,012.82

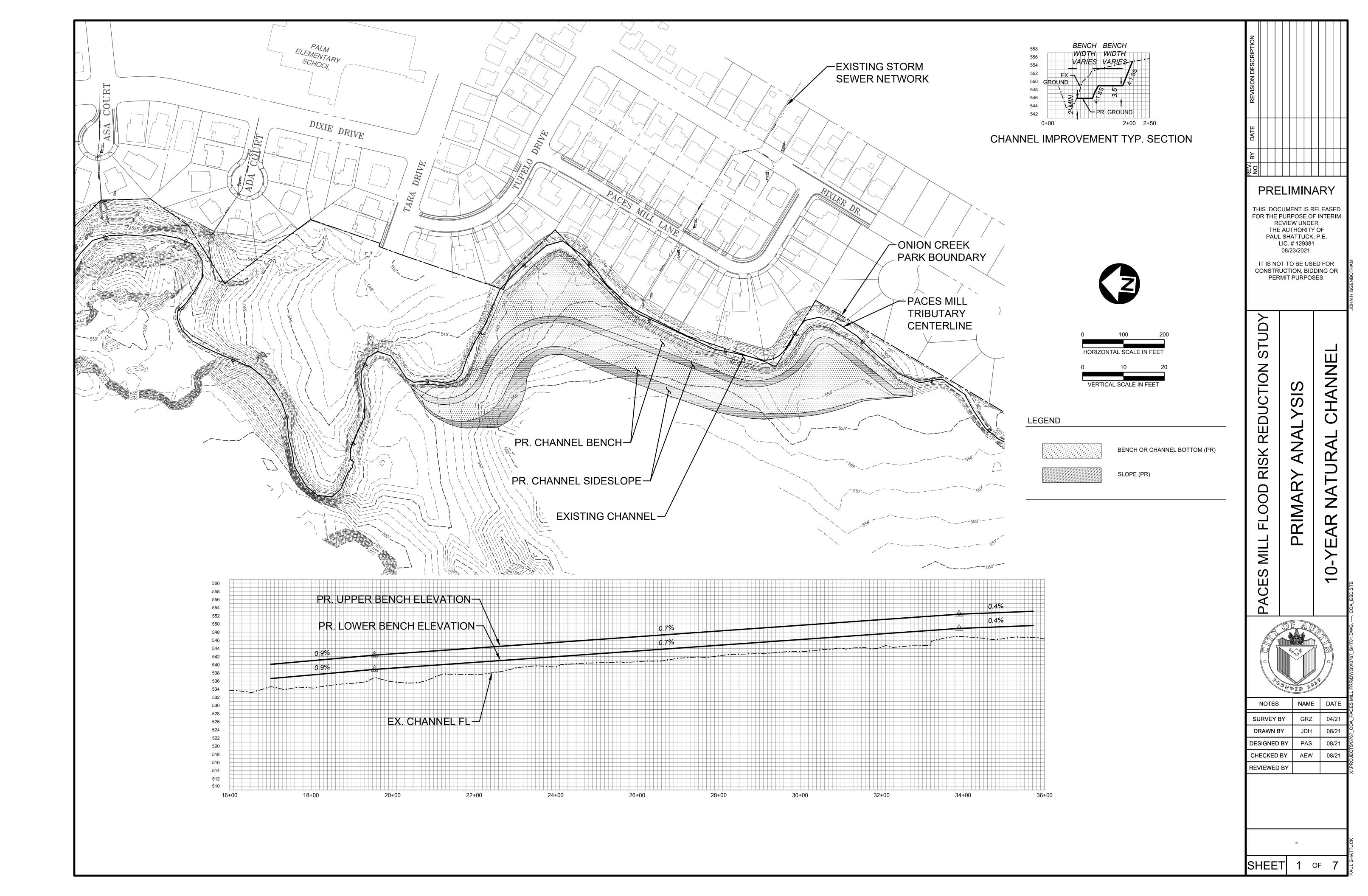
BID ITEM NO.	ITEM DESCRIPTION	UNIT	QTY.	UNIT COST	TOTAL COST
101S-B	PREPARING RIGHT OF WAY	STA	6	\$ 10,000.00	\$ 60,000.00
111S-A	EXCAVATION	СҮ	2095	\$ 50.00	\$ 104,757.30
210S-A	FLEXIBLE BASE	СҮ	284	\$ 100.00	\$ 28,400.00
340S-B3	HOT MIX ASPHALTIC CONCRETE PAVEMENT, 3 INCHES, TYPE C	SY	1705	\$ 50.00	\$ 85,263.50
414S-C	CAST-IN-PLACE PORTLAND CEMENT CONCRETE RETAINING WALL, INCLUDING REINFORCEMENT	СҮ	53	\$ 1,500.00	\$ 78,750.00
430S-B	P.C. CONCRETE CURB AND GUTTER (FINE GRADING)	LF	944	\$ 50.00	\$ 47,200.00
509S-1	TRENCH EXCAVATION SAFETY PROTECTIVE SYSTEMS, (ALL DEPTHS)	LF	630	\$ 10.00	\$ 6,300.00
559S-6X4	PRECAST CONCRETE BOX CULVERTS, 6 FT X 4 FT	LF	0	\$ 600.00	\$ -
559S-8X6	PRECAST CONCRETE BOX CULVERTS, 8 FT X 6 FT	LF	630	\$ 800.00	\$ 504,000.00
591S - A	DRY ROCK RIPRAP, D50 = 18 IN	SY	0	\$ 130.00	\$
591S-F	CONCRETE RIPRAP, 6 IN	SY	644	\$ 300.00	\$ 193,155.00
605S	SOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE	SY	292	\$ 10.00	\$ 2,918.44
639S	ROCK BERM	LF	106	\$ 45.00	\$ 4,770.00
641S	STABILIZED CONSTRUCTION ENTRANCE	EA	2	\$ 3,500.00	\$ 7,000.00
642S	SILT FENCE FOR EROSION CONTROL	LF	360	\$ 10.00	\$ 3,596.60
700S-TM	TOTAL MOBILIZATION PAYMENT	LS	1	\$ 61,205.54	\$ 61,205.54
704	METAL BEAM GUARD RAILING	LF	300	\$ 50.00	\$ 15,000.00
704 - T	METAL BEAM GUARD RAILING, TERMINAL ANCHOR SECTIONS	EA	2	\$ 1,000.00	\$ 2,000.00
802S-A	PROJECT SIGN	EA	1	\$ 1,000.00	\$ 1,000.00
803S-MO	BARRICADES, SIGNS, AND TRAFFIC HANDLING	МО	6	\$ 5,000.00	\$ 30,000.00
SS1000	COFFER DAM & SITE DEWATERING	LS	1	\$ 50,000.00	\$ 50,000.00
CONSTRUCTION SUE	BTOTAL				\$ 1,285,316.39
	CONTINGENCY (30% OF SUBTOTAL)				\$ 385,595.00
CONSTRUCTION COS	ST ESTIMATE				\$ 1,670,911.39

Appendix C: Thaxton Road Hydrologic Flow Results

The hydrologic flow results with the Thaxton Road crossing are shown in Table 1.

Pre-Construct	Pre-Construction Flows (Ultimate Hydrology) (cfs)								
	2 -	10 -	25 -	100 -					
Element	Year	Year	Year	Year					
LOCR320	495.1	937.2	1195.6	1600.5					
VertexPond	131.3	430.6	620.4	1095					
LOCR330	525.9	980.4	1244.1	1654.4					
JLOCR330	525.9	980.4	1244.1	1654.4					
RLOCR340C	490.1	922.2	1176.2	1571.8					
LOCR340C	31.1	67.1	88.8	122.9					
JLOCR340C	507.1	960.7	1226.4	1640.4					
JLOCR320_340C	576.1	1298.9	1751.4	2580.6					
LOCR340A	352.9	668.3	852.7	1139.3					
PCM_1_200	87.7	274.6	713.2	1163.4					
JLOCR340A	87.7	274.6	713.2	1163.4					
RLOCR340B	87.6	274.3	703.9	1130.8					
LOCR340B	268.7	514.9	659.9	886					
PCM_1_100	153.7	432.5	772.4	1903.3					
JLOCR340B	153.7	432.5	772.4	1903.3					
JLOCR340B_340C	728.5	1719.2	2457.2	3481.4					
RLOCR350A	691.8	1694.2	2413.8	3453.6					
LOCR350A	211.4	443.9	586.4	812.5					
JLOCR350A	779.2	1931	2750.2	4062					
RLOCR350B	730.1	1876.5	2663.2	3929.5					
LOCR350B	125.2	280.5	380	541.1					
JLOCR350B	750	1935.4	2750.1	4080					
RLOCR350C	733.7	1898.8	2697.6	4002.7					
LOCR350C	97.6	224.6	306.9	441.3					
JLOCR350C	751.6	1956.6	2784	4146.9					

Table 1: Hydrologic Flows with Thaxton Road Crossing


The hydrologic flow results without the Thaxton Road crossing are shown in Table 2.

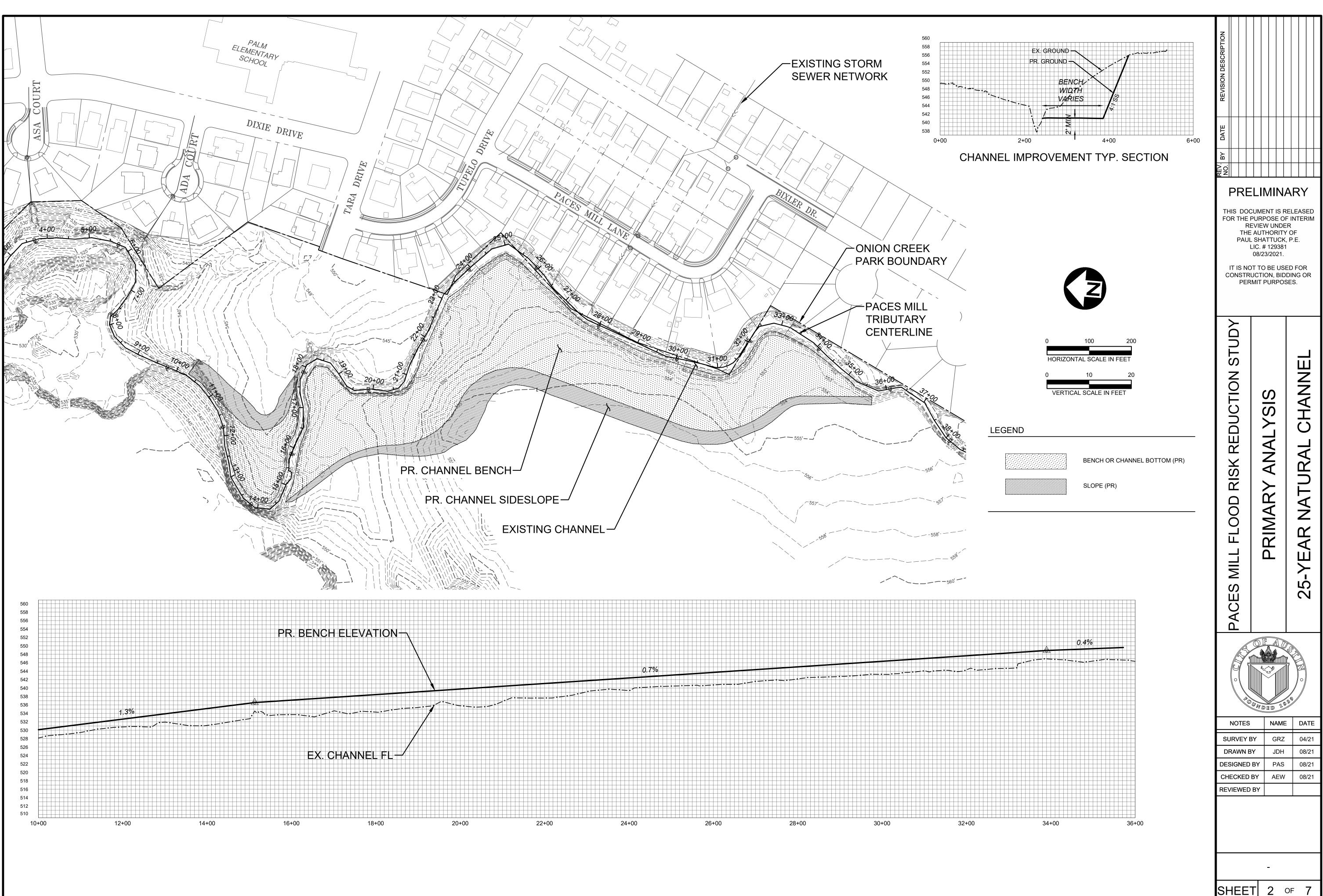
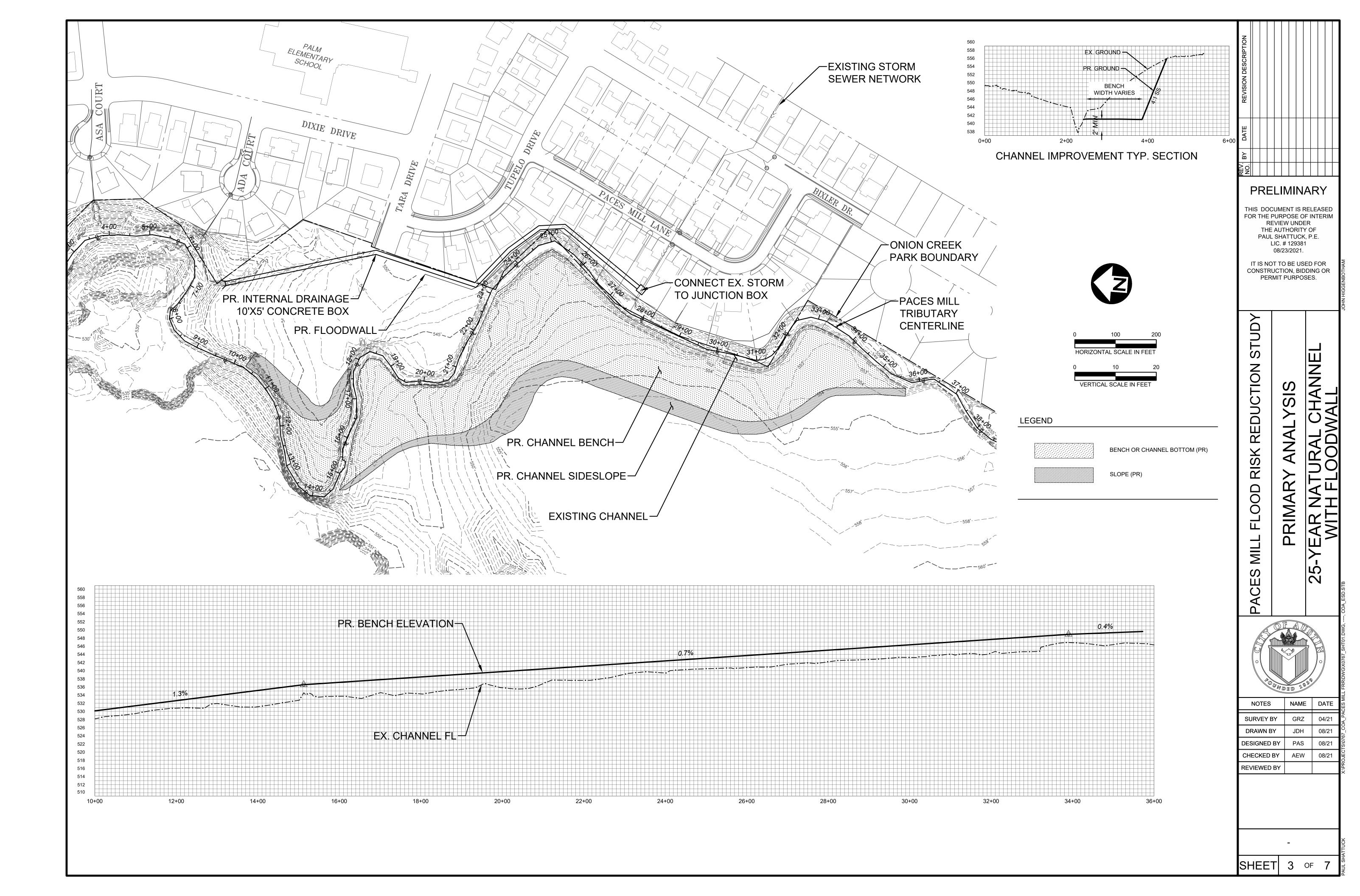
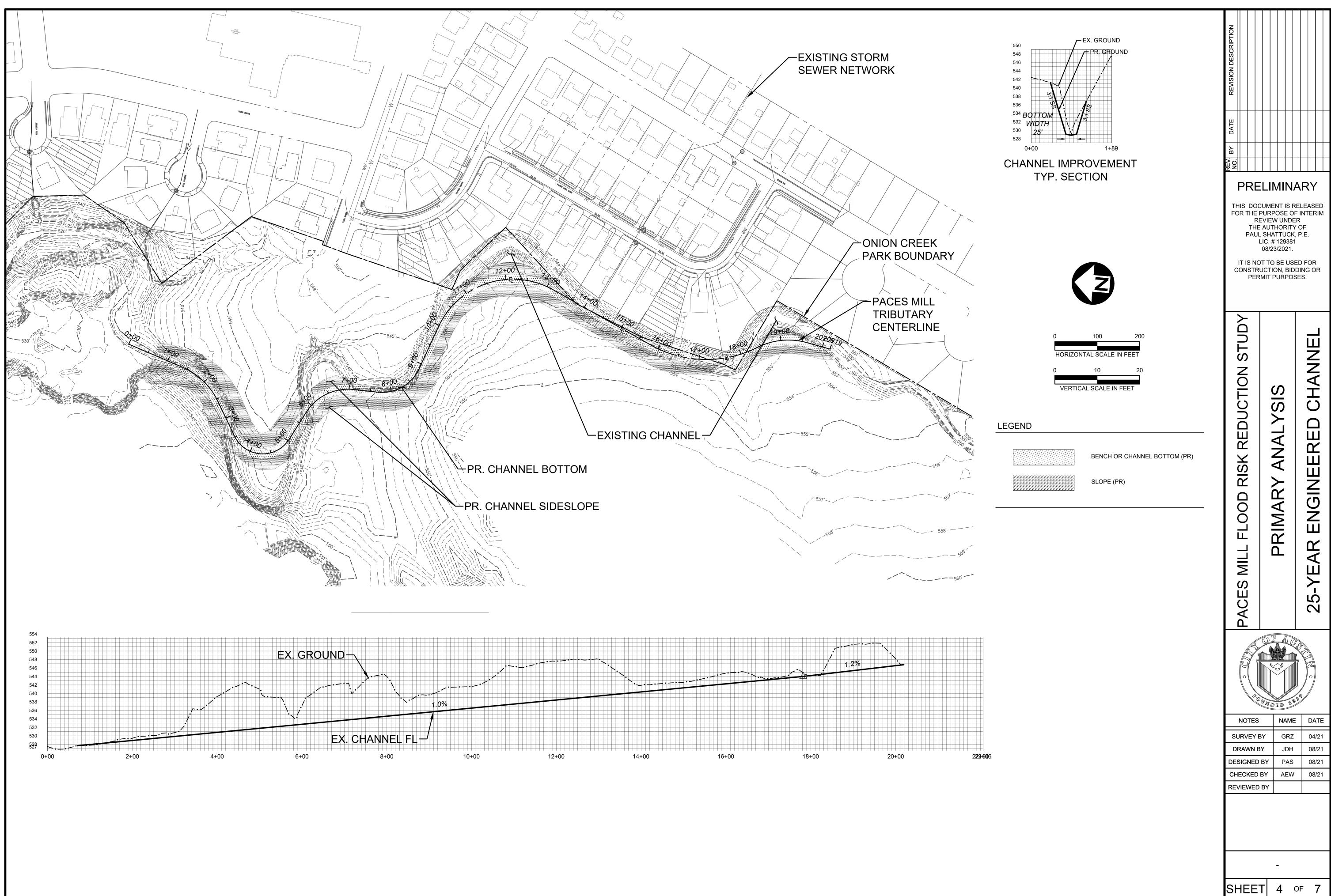

Post-Construction Flows (Ultimate Hydrology) (cfs)				
	2 -	10 -	25 -	100 -
Element	Year	Year	Year	Year
LOCR320	495.1	937.2	1195.6	1600.5
VertexPond	131.3	430.6	620.4	1095
LOCR330	525.9	980.4	1244.1	1654.4
JLOCR330	525.9	980.4	1244.1	1654.4
RLOCR340C	490.1	922.2	1176.2	1571.8
LOCR340C	31.1	67.1	88.8	122.9
JLOCR340C	507.1	960.7	1226.4	1640.4
JLOCR320_340C	576.1	1298.9	1751.4	2580.6
LOCR340A	352.9	668.3	852.7	1139.3
PCM_1_200	87.7	274.6	713.2	1163.4
JLOCR340A	87.7	274.6	713.2	1163.4
RLOCR340B	87.6	274.3	703.9	1130.8
LOCR340B	268.7	514.9	659.9	886
PCM_1_100	153.7	432.5	772.4	1903.3
JLOCR340B	153.7	432.5	772.4	1903.3
JLOCR340B_340C	728.5	1719.2	2457.2	3481.4
RLOCR350A	689.1	1702	2427.8	3456.4
LOCR350A	211.4	443.9	586.4	812.5
JLOCR350A	776.6	1950.6	2780.3	4069.8
RLOCR350B	745.2	1884.9	2684.8	3945.1
LOCR350B	125.2	280.5	380	541.1
JLOCR350B	765	1943.8	2771.7	4097.4
RLOCR350C	751.8	1904.7	2719.4	4020.7
LOCR350C	97.6	224.6	306.9	441.3
JLOCR350C	770.7	1962.5	2805.8	4164.9

Table 2: Hydrologic Flows without Thaxton Road Crossing

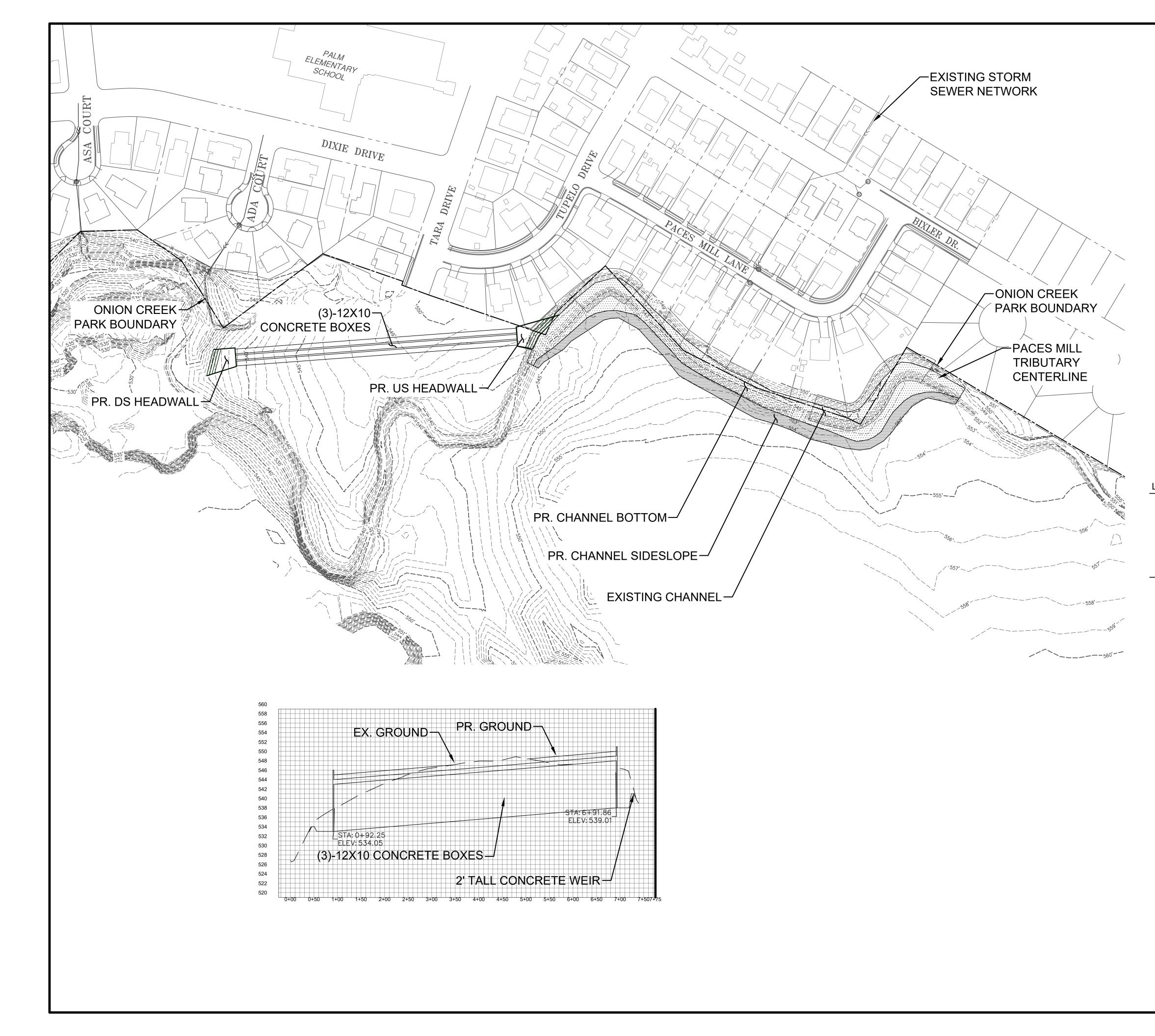
Appendix D: Primary Analysis Proposed Design Schematics

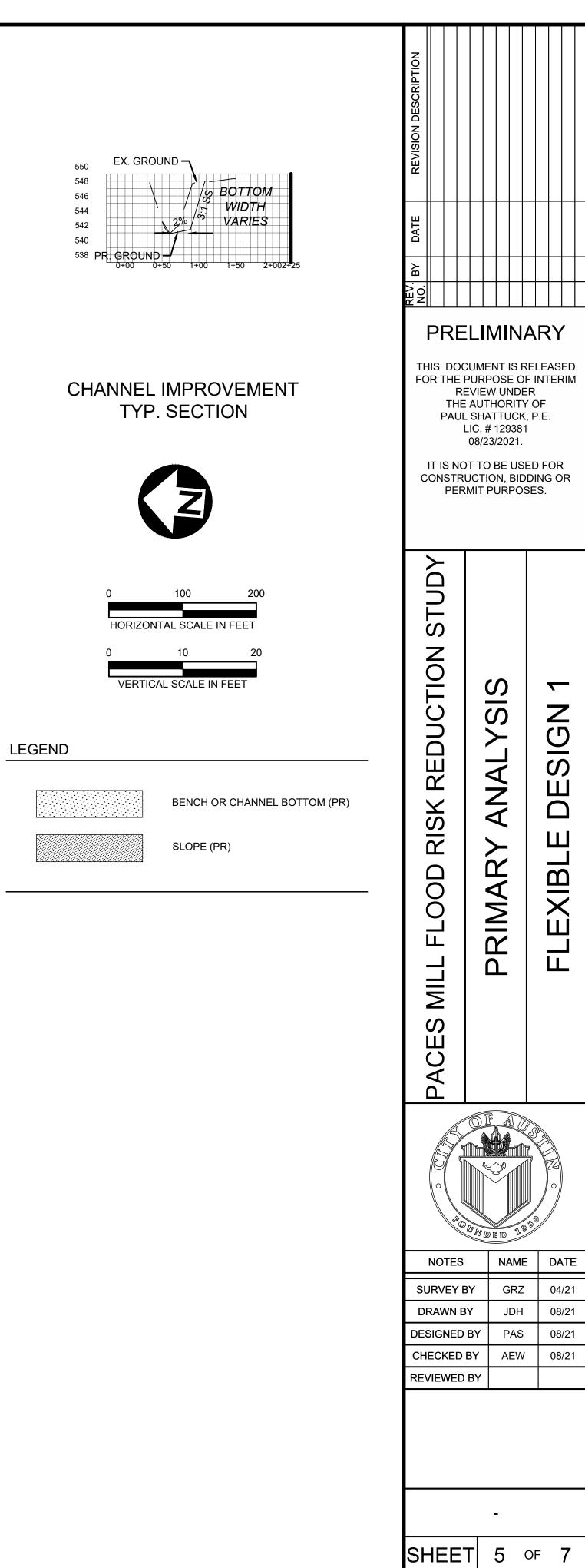




PROJECTS\0767_COA_PACES MILL FRR\DWG\X0767_SHT01.DWG, ----, 0

CK

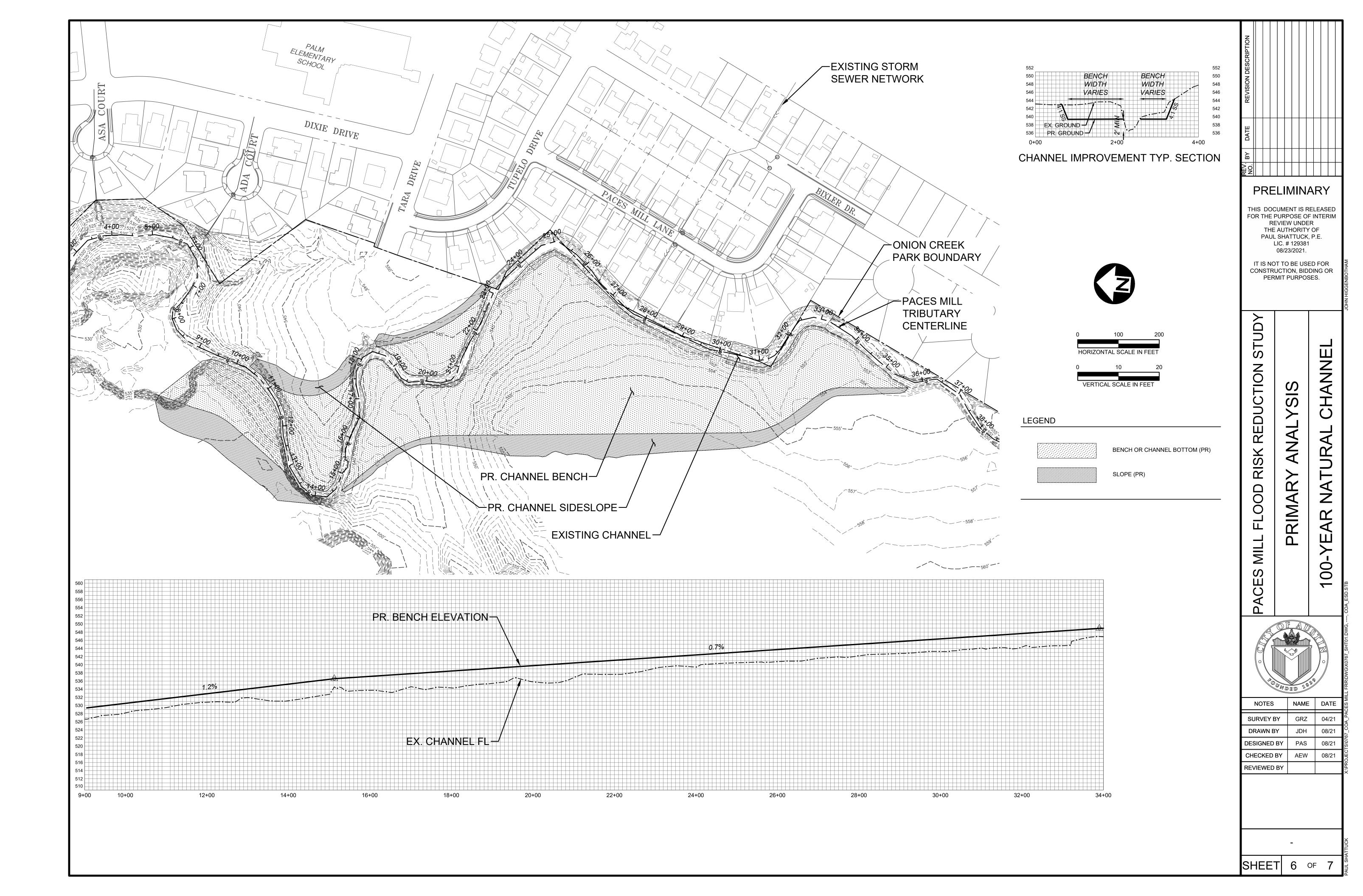


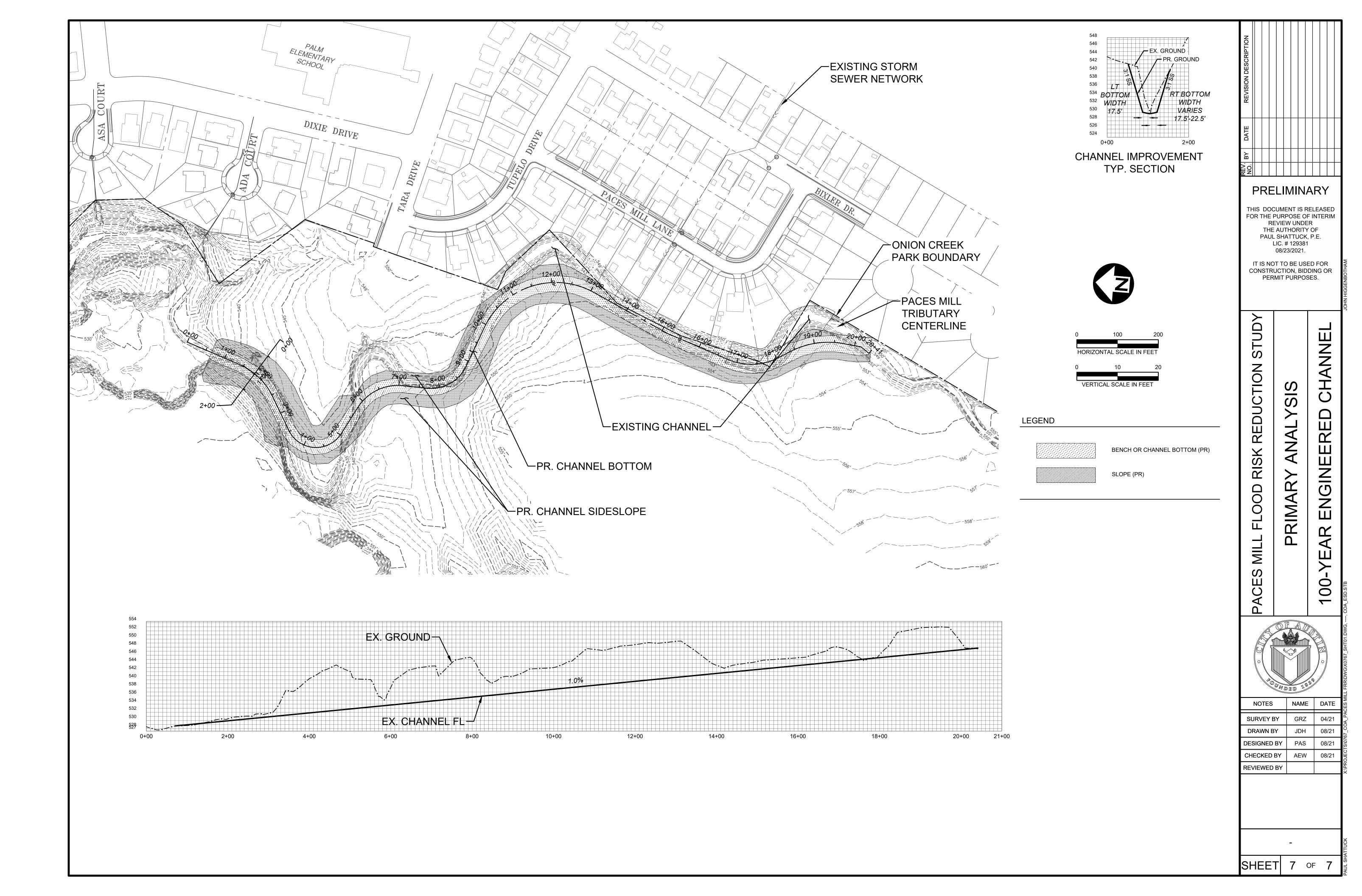


JL

COA PACES MILL FRR\DWG\X0767 SHT01.DWG, ----, COA

- SHATTUCK





JOHN HIGGENBOT

COA_PACES MILL FRR\DWG\X0767_SHT01.DWG, ----, CO

- SHATTUCK

Appendix E: Primary Analysis Inundation Exhibits

Existing 2-Year Inundation Boundary

Onion Creek District Park

Parcels

Paces Mill Tributary Centerline

Onion Creek Centerline

Streets

City of Austin Paces Mill Lane Flood Risk Reduction

Existing 2-Year Inundation Boundary

1 inch = 400 feet

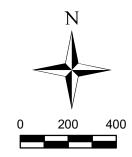
Date: 8/20/2021

K·FRIESE + ASSOCIATES

PUBLIC PROJECT ENGINEERING

Onion Creek District Park Parcels

Paces Mill Tributary Centerline

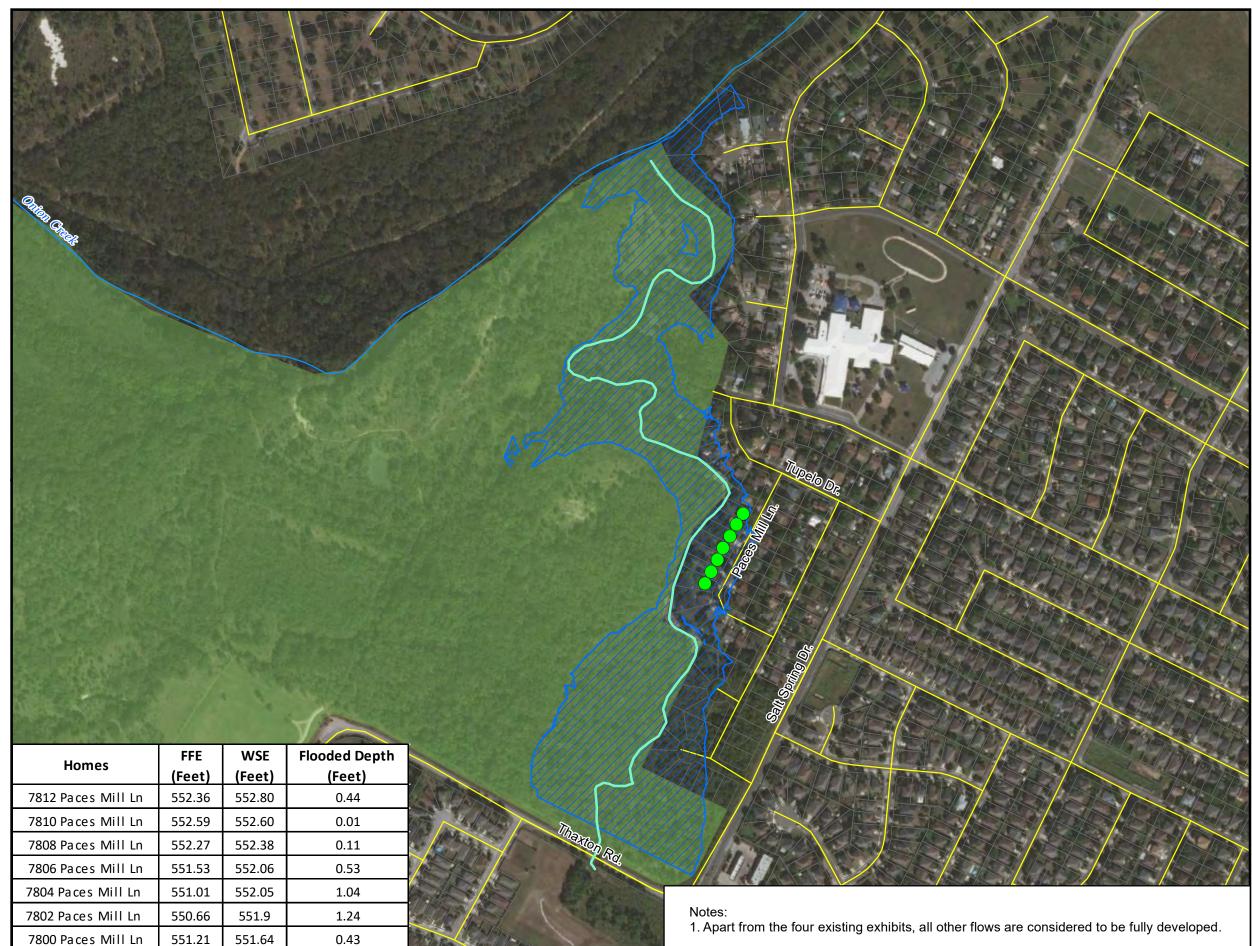

Existing 10-Year Inundation Boundary

Onion Creek Centerline

Streets

City of Austin Paces Mill Lane Flood Risk Reduction

Existing 10-Year Inundation Boundary


1 inch = 400 feet

Date: 8/20/2021

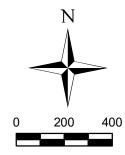
PUBLIC PROJECT ENGINEERING

Onion Creek Centerline

Streets

Parcels

Flooded Homes


City of Austin Paces Mill Lane **Flood Risk Reduction**

Existing 25-Year Inundation Boundary

Onion Creek District Park

Paces Mill Tributary Centerline

Existing 25-Year Inundation Boundary

1 inch = 400 feet

Date: 8/20/2021

KFRIESE + ASSOCIATES

PUBLIC PROJECT ENGINEERING

	FFE	WSE	Flooded Depth	
Homes	(Feet)	(Feet)	(Feet)	
7816 Paces Mill Ln	554.39	554.62	0.23	
7814 Paces Mill Ln	553.31	554.47	1.16	
7812 Paces Mill Ln	552.36	554.09	1.73	
7810 Paces Mill Ln	552.59	553.84	1.25	
7808 Paces Mill Ln	552.27	553.66	1.39	
7806 Paces Mill Ln	551.53	553.48	1.95	
7804 Paces Mill Ln	551.01	553.45	2.44	
7802 Paces Mill Ln	550.66	553.33	2.67	- Maria
7800 Paces Mill Ln	551.21	553.25	2.04	Thatian Rol
7702 Paces Mill Ln 6207 Tupelo Dr	552.73 552.63	552.95 552.68	0.22	
6205 Tupelo Dr	551.99	552.58	0.59	Notes:
6203 Tupelo Dr	551.53	552.58	0.59	1. Apart from the four existing exhibits, all other flows are considered to be fully of
6203 Tupero Dr	551.53	JJ2.12	0.59	

ly developed.

<u>Legend</u>

Existing 100-Year Inundation Boundary Onion Creek District Park

Parcels

Paces Mill Tributary Centerline


Onion Creek Centerline

Flooded Homes

City of Austin Paces Mill Lane Flood Risk Reduction

Existing 100-Year Inundation Boundary

1 inch = 400 feet

Date: 8/20/2021

K · FRIESE + ASSOCIATES

PUBLIC PROJECT ENGINEERING

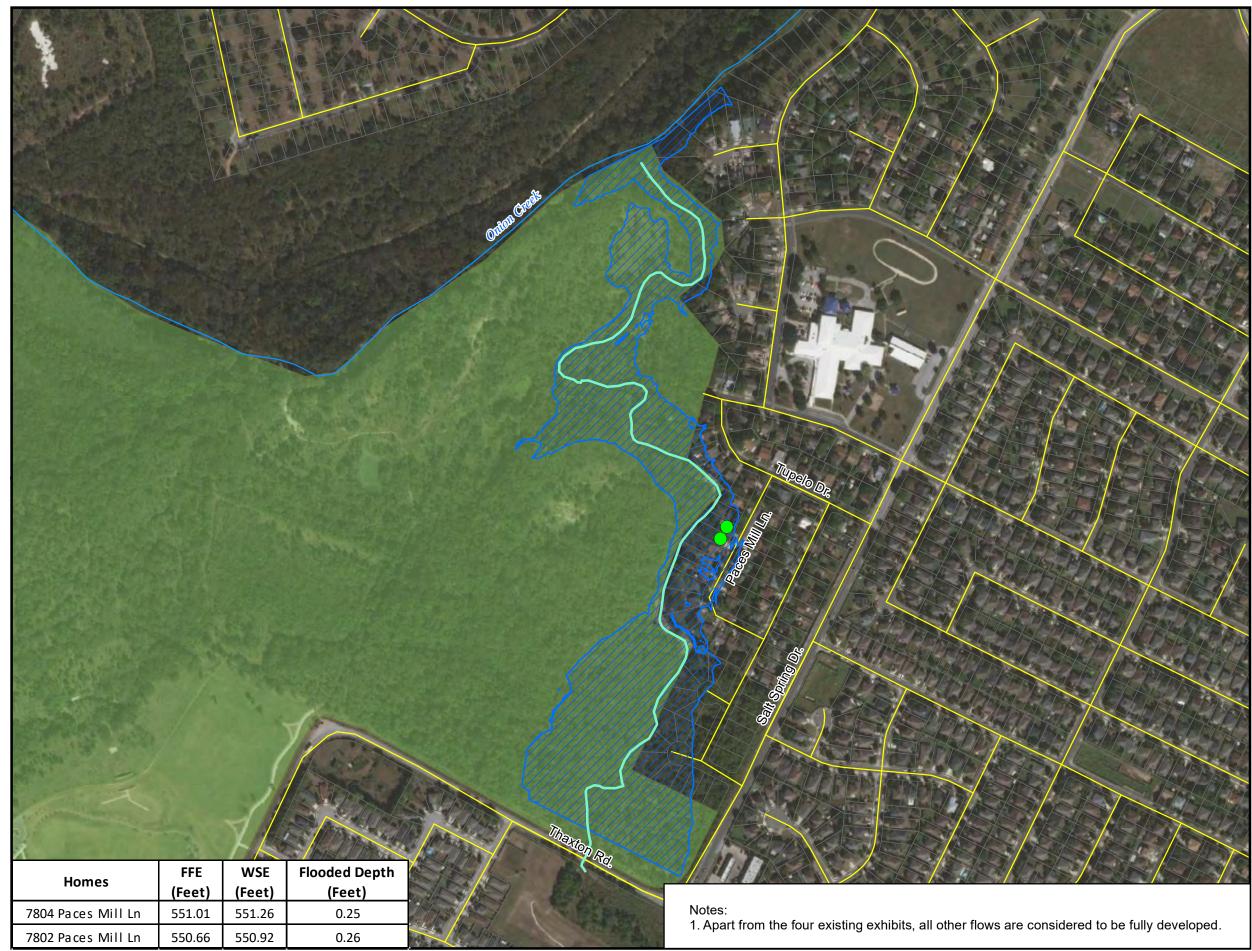
Ultimate 2-Year Inundation Boundary

- Onion Creek District Park
- Parcels
- Paces Mill Tributary Centerline
- Onion Creek Centerline

Streets

City of Austin Paces Mill Lane Flood Risk Reduction

Fully-Developed 2-Year Inundation Boundary


1 inch = 400 feet

Date: 8/20/2021

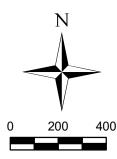
K·FRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING

Ultimate 10-Year Inundation Boundary

Onion Creek District Park

Parcels

Paces Mill Tributary Centerline

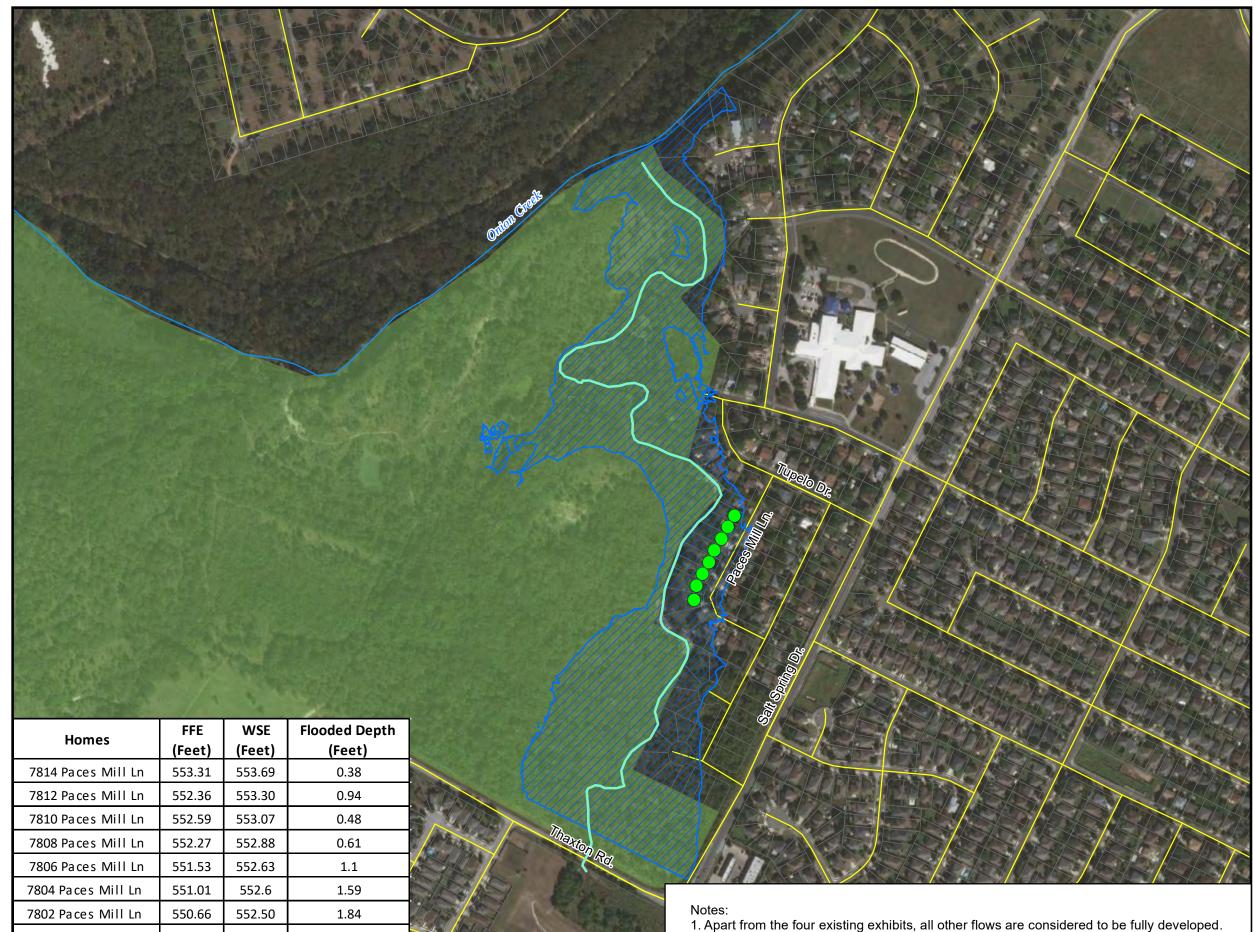

Onion Creek Centerline

Streets

Flooded Homes

City of Austin Paces Mill Lane **Flood Risk Reduction**

Fully-Developed 10-Year Inundation Boundary


1 inch = 400 feet

Date: 8/20/2021

KFRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING

551.21

7800 Paces Mill Ln

552.32

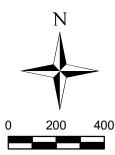
1.11

Legend

Ultimate 25-Year Inundation Boundary

Onion Creek District Park

Parcels


Paces Mill Tributary Centerline

- Onion Creek Centerline
- Streets

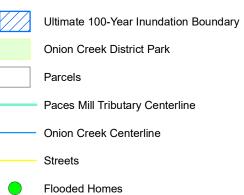
Flooded Homes

City of Austin Paces Mill Lane **Flood Risk Reduction**

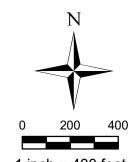
Fully Developed 25-Year **Inundation Boundary**

1 inch = 400 feet

Date: 8/20/2021


K F R I E S E + ASSOCIATES PUBLIC PROJECT ENGINEERING

Homes		WSE	Flooded Depth	
-		(Feet)	(Feet)	
7040 D 1411	1 555 14 5		0.14	
7818 Paces Mill Ln		555.28		
7816 Paces Mill Ln	554.39 5	555.13	0.74	
7816 Paces Mill Ln 7814 Paces Mill Ln	554.39 5 553.31 5	555.13 554.98	0.74 1.67	
7816 Paces Mill Ln 7814 Paces Mill Ln 7812 Paces Mill Ln	554.39 51 553.31 51 552.36 51	555.13 554.98 554.59	0.74 1.67 2.23	
7816 Paces Mill Ln 7814 Paces Mill Ln 7812 Paces Mill Ln 7810 Paces Mill Ln	554.39 51 553.31 51 552.36 51 552.59 51	555.13 554.98 554.59 554.35	0.74 1.67 2.23 1.76	
7816 Paces Mill Ln 7814 Paces Mill Ln 7812 Paces Mill Ln 7810 Paces Mill Ln 7808 Paces Mill Ln	554.39 51 553.31 51 552.36 51 552.59 51 552.27 51	555.13 554.98 554.59 554.35 554.18	0.74 1.67 2.23 1.76 1.91	
7816 Paces Mill Ln 7814 Paces Mill Ln 7812 Paces Mill Ln 7810 Paces Mill Ln 7808 Paces Mill Ln 7806 Paces Mill Ln	554.39 51 553.31 51 552.36 51 552.59 51 552.27 51 551.53 51	555.13 554.98 554.59 554.35 554.18 553.96	0.74 1.67 2.23 1.76 1.91 2.43	
7816 Paces Mill Ln 7814 Paces Mill Ln 7812 Paces Mill Ln 7810 Paces Mill Ln 7808 Paces Mill Ln 7806 Paces Mill Ln 7804 Paces Mill Ln	554.39 51 553.31 51 552.36 51 552.59 51 552.27 51 551.53 51 551.01 51	555.13 554.98 554.59 554.35 554.18 553.96 553.98	0.74 1.67 2.23 1.76 1.91 2.43 2.97	
7816 Paces Mill Ln 7814 Paces Mill Ln 7812 Paces Mill Ln 7810 Paces Mill Ln 7808 Paces Mill Ln 7806 Paces Mill Ln 7804 Paces Mill Ln 7802 Paces Mill Ln	554.39 51 553.31 51 552.36 51 552.59 51 552.27 51 551.53 51 5550.66 51	555.13 554.98 554.59 554.35 554.18 553.96 553.98 553.92	0.74 1.67 2.23 1.76 1.91 2.43 2.97 3.26	
7816 Paces Mill Ln 7814 Paces Mill Ln 7812 Paces Mill Ln 7810 Paces Mill Ln 7808 Paces Mill Ln 7806 Paces Mill Ln 7804 Paces Mill Ln 7802 Paces Mill Ln 7800 Paces Mill Ln	554.39 51 553.31 51 552.36 51 552.59 51 551.53 51 551.01 51 5551.21 51	555.13 554.98 554.59 554.35 554.18 553.96 553.98 553.92 553.89 553.89	0.74 1.67 2.23 1.76 1.91 2.43 2.97 3.26 2.68	
7816 Paces Mill Ln 7814 Paces Mill Ln 7812 Paces Mill Ln 7810 Paces Mill Ln 7808 Paces Mill Ln 7806 Paces Mill Ln 7804 Paces Mill Ln 7802 Paces Mill Ln 7800 Paces Mill Ln 7702 Paces Mill Ln	554.39 51 553.31 51 552.36 51 552.59 51 552.27 51 551.53 51 550.66 51 551.21 51 552.73 51	555.13 554.98 554.59 554.35 554.18 553.96 553.98 553.92 553.89 553.53	0.74 1.67 2.23 1.76 1.91 2.43 2.97 3.26 2.68 0.80	
7816 Paces Mill Ln 7814 Paces Mill Ln 7812 Paces Mill Ln 7810 Paces Mill Ln 7808 Paces Mill Ln 7806 Paces Mill Ln 7804 Paces Mill Ln 7802 Paces Mill Ln 7800 Paces Mill Ln 7702 Paces Mill Ln 6207 Tupelo Dr	554.39 51 553.31 51 552.36 51 552.59 51 552.27 51 551.53 51 550.66 51 551.21 51 552.73 51 552.63 51	555.13 554.98 554.59 554.35 554.35 553.96 553.98 553.92 553.89 553.89 553.53 553.19	0.74 1.67 2.23 1.76 1.91 2.43 2.97 3.26 2.68 0.80 0.56	
7816 Paces Mill Ln 7814 Paces Mill Ln 7812 Paces Mill Ln 7810 Paces Mill Ln 7808 Paces Mill Ln 7806 Paces Mill Ln 7804 Paces Mill Ln 7802 Paces Mill Ln 7800 Paces Mill Ln 7702 Paces Mill Ln	554.39 51 553.31 51 552.36 51 552.59 51 552.27 51 551.53 51 550.66 51 552.73 51 552.73 51 552.63 51 551.99 51 552.73 51 552.63 51 551.99 51	555.13 554.98 554.59 554.35 554.18 553.96 553.98 553.92 553.89 553.53	0.74 1.67 2.23 1.76 1.91 2.43 2.97 3.26 2.68 0.80	

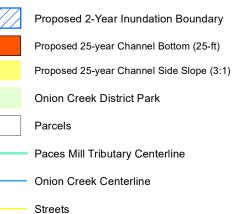

developed.

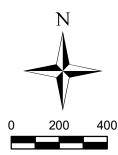
<u>Legend</u>

City of Austin Paces Mill Lane Flood Risk Reduction

Fully-Developed 100-Year Inundation Boundary

1 inch = 400 feet


Date: 8/20/2021

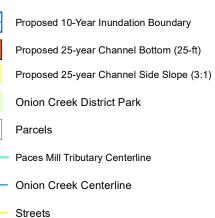

K + FRIESE + ASSOCIATES

City of Austin Paces Mill Lane **Flood Risk Reduction**

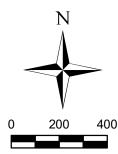
25-Year Engineered Channel Proposed 2-Year Inundation Boundary

1 inch = 400 feet

Date: 8/20/2021



K·FRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING

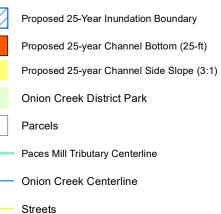


City of Austin Paces Mill Lane **Flood Risk Reduction**

25-Year Engineered Channel Proposed 10-Year Inundation Boundary

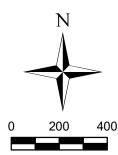
1 inch = 400 feet

Date: 8/20/2021



KFRIESE + ASSOCIATES

PUBLIC PROJECT ENGINEERING

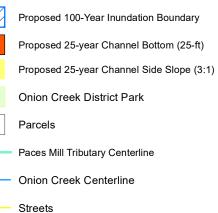


City of Austin Paces Mill Lane **Flood Risk Reduction** 25-Year Engineered Channel

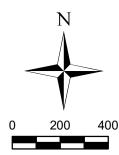
Proposed 25-Year Inundation Boundary

1 inch = 400 feet

Date: 8/20/2021



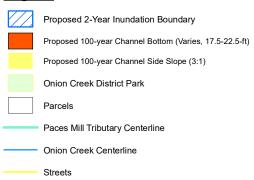
KFRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING

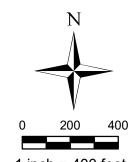


City of Austin Paces Mill Lane **Flood Risk Reduction** 25-Year Engineered Channel

Proposed 100-Year Inundation Boundary

1 inch = 400 feet

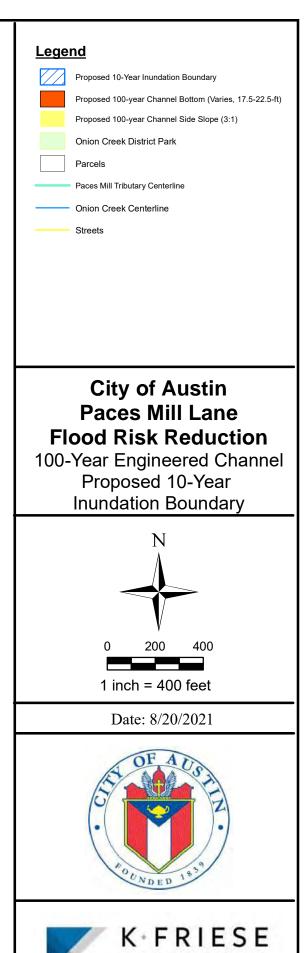

Date: 8/20/2021


KFRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING

City of Austin Paces Mill Lane **Flood Risk Reduction**

100-Year Engineered Channel Proposed 2-Year Inundation Boundary

1 inch = 400 feet

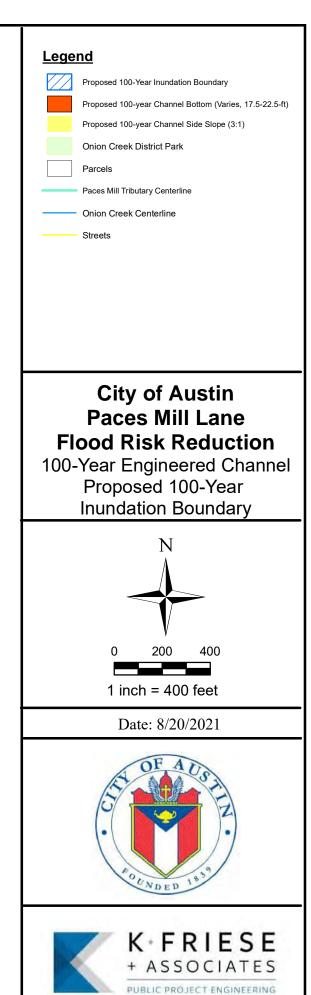

Date: 8/20/2021

KFRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING

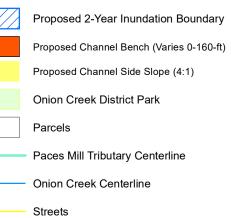
FIRM NO. 6535

+ ASSOCIATES

PUBLIC PROJECT ENGINEERING



Legend Proposed 25-Year Inundation Boundary Proposed 100-year Channel Bottom (Varies, 17.5-22.5-ft) Proposed 100-year Channel Side Slope (3:1) Onion Creek District Park Parcels Paces Mill Tributary Centerline Onion Creek Centerline Streets City of Austin Paces Mill Lane **Flood Risk Reduction** 100-Year Engineered Channel Proposed 25-Year Inundation Boundary 200 400 0 1 inch = 400 feet Date: 8/20/2021 KFRIESE + ASSOCIATES


FIRM NO. 6535

PUBLIC PROJECT ENGINEERING

City of Austin Paces Mill Lane **Flood Risk Reduction** 10-Year Natural Channel

Proposed 2-Year Inundation Boundary

1 inch = 400 feet

Date: 8/20/2021

KFRIESE + ASSOCIATES

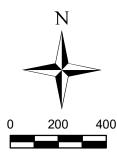
PUBLIC PROJECT ENGINEERING

City of Austin Paces Mill Lane **Flood Risk Reduction** 10-Year Natural Channel

Proposed 10-Year Inundation Boundary

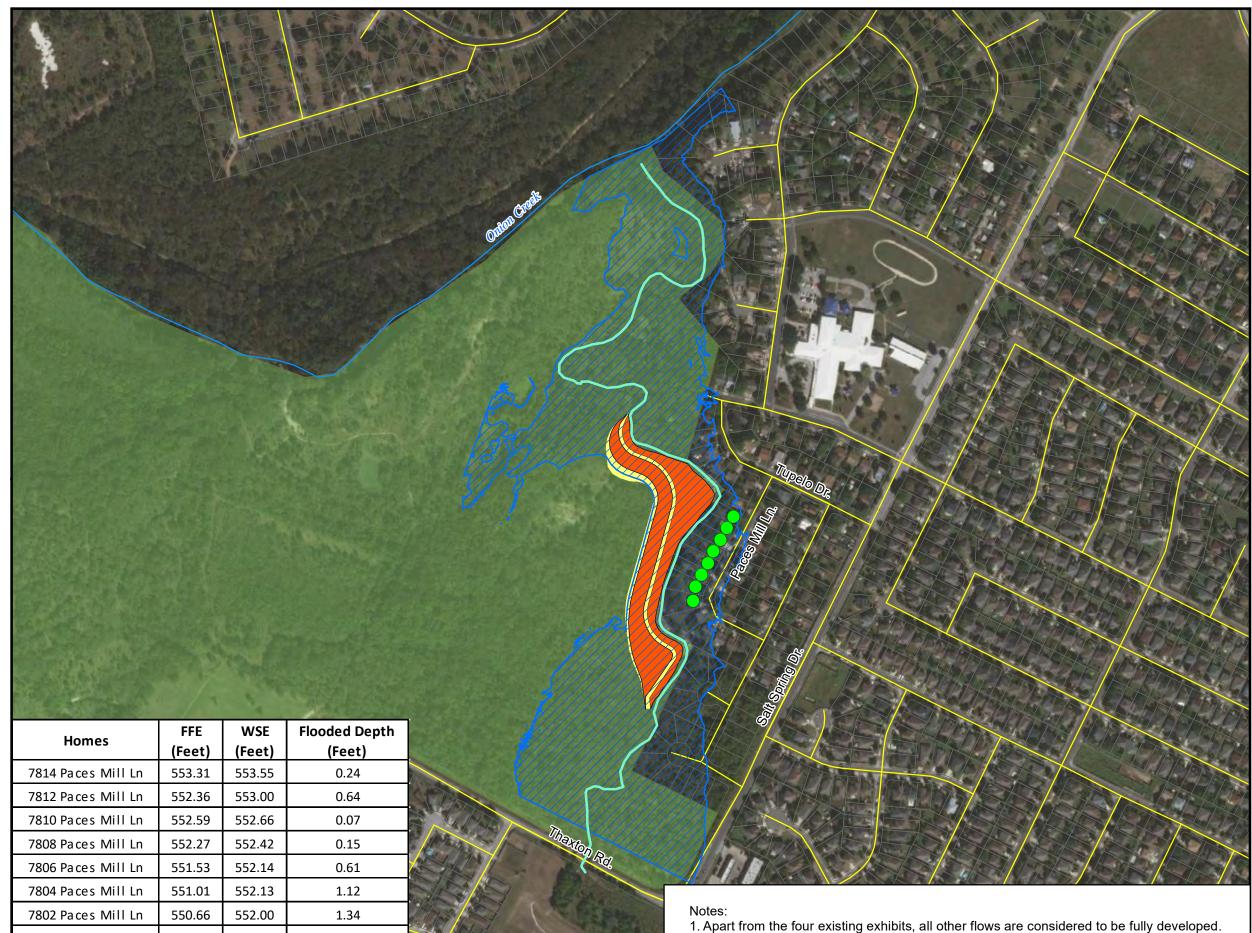
1 inch = 400 feet

Date: 8/20/2021


KFRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING

City of Austin Paces Mill Lane **Flood Risk Reduction** 10-Year Natural Channel Proposed 25-Year

Inundation Boundary


1 inch = 400 feet

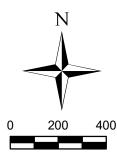
Date: 8/20/2021

KFRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING

551.21

7800 Paces Mill Ln

551.68


0.47

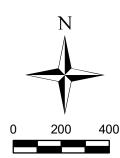
Legend

City of Austin Paces Mill Lane **Flood Risk Reduction 10-Year Natural Channel** Proposed 100-Year

Inundation Boundary

1 inch = 400 feet

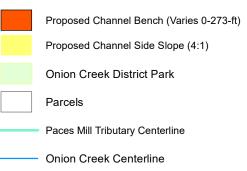
Date: 8/25/2021


K F R I E S E + ASSOCIATES PUBLIC PROJECT ENGINEERING

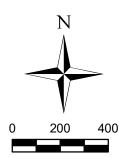
City of Austin Paces Mill Lane **Flood Risk Reduction** 25-Year Natural Channel

Proposed 2-Year Inundation Boundary

1 inch = 400 feet


Date: 8/20/2021

KFRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING



Streets

City of Austin Paces Mill Lane **Flood Risk Reduction** 25-Year Natural Channel

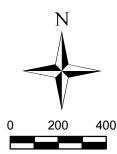
Proposed 10-Year Inundation Boundary

1 inch = 400 feet

Date: 8/20/2021



KFRIESE + ASSOCIATES

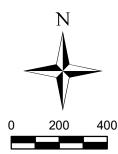

PUBLIC PROJECT ENGINEERING

City of Austin Paces Mill Lane **Flood Risk Reduction** 25-Year Natural Channel Proposed 25-Year

Inundation Boundary

1 inch = 400 feet

Date: 8/20/2021


KFRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING

City of Austin Paces Mill Lane **Flood Risk Reduction** 25-Year Natural Channel Proposed 100-Year

Inundation Boundary

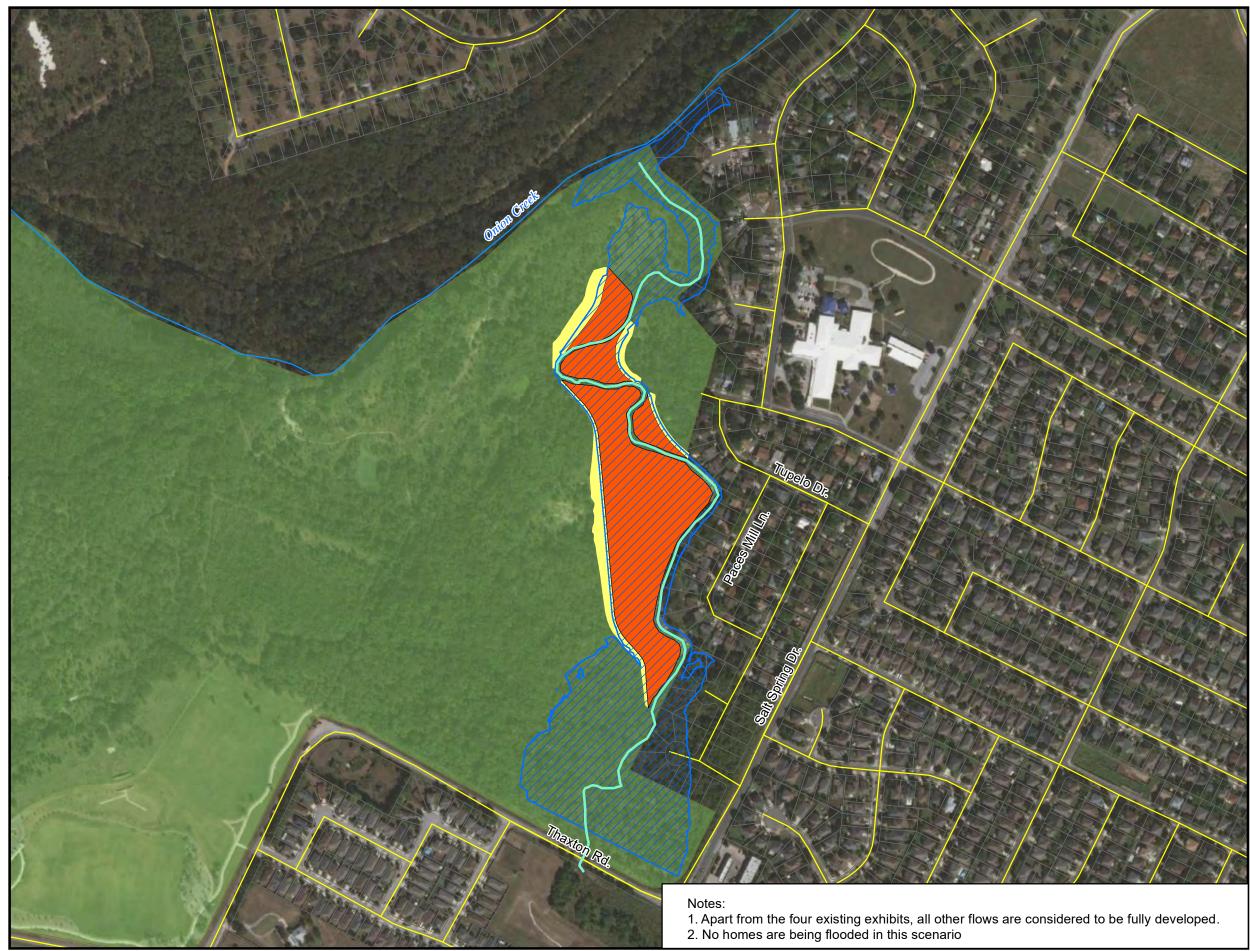
1 inch = 400 feet

Date: 8/20/2021

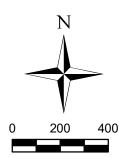
KFRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING

City of Austin Paces Mill Lane **Flood Risk Reduction** 100-Year Natural Channel

Proposed 2-Year Inundation Boundary


1 inch = 400 feet

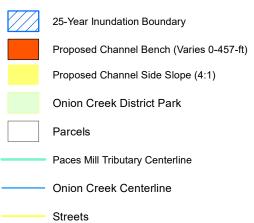
Date: 8/20/2021

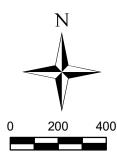

KFRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING

City of Austin Paces Mill Lane **Flood Risk Reduction** 100-Year Natural Channel Proposed 10-Year

Inundation Boundary

1 inch = 400 feet


Date: 8/20/2021


KFRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING

City of Austin Paces Mill Lane **Flood Risk Reduction** 100-Year Natural Channel Proposed 25-Year

Inundation Boundary

1 inch = 400 feet

Date: 8/20/2021

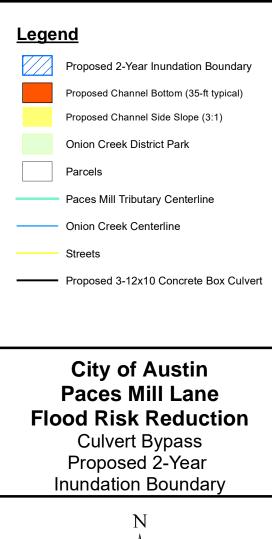
KFRIESE + ASSOCIATES

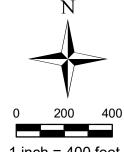
PUBLIC PROJECT ENGINEERING

City of Austin Paces Mill Lane **Flood Risk Reduction** 100-Year Natural Channel Proposed 100-Year

Inundation Boundary

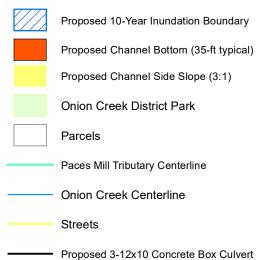
1 inch = 400 feet


Date: 8/20/2021



KFRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING

1 inch = 400 feet

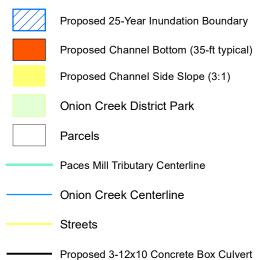

Date: 8/20/2021

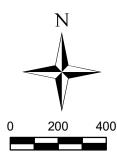
K·FRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING

City of Austin Paces Mill Lane **Flood Risk Reduction** Culvert Bypass

Proposed 10-Year Inundation Boundary

1 inch = 400 feet


Date: 8/20/2021

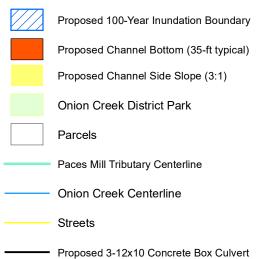

KFRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING

City of Austin Paces Mill Lane **Flood Risk Reduction** Culvert Bypass

Proposed 25-Year Inundation Boundary

1 inch = 400 feet

Date: 8/20/2021



KFRIESE + ASSOCIATES

PUBLIC PROJECT ENGINEERING

City of Austin Paces Mill Lane **Flood Risk Reduction** Culvert Bypass

Proposed 100-Year Inundation Boundary

1 inch = 400 feet

Date: 8/20/2021

KFRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING

Legend

Proposed 2-Year Inundation Boundary Proposed Channel Maintenance

Onion Creek District Park

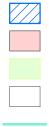
- Parcels
- Paces Mill Tributary Centerline
- Onion Creek Centerline
- Streets

City of Austin Paces Mill Lane **Flood Risk Reduction**

Channel Maintenance Proposed 2-Year Inundation Boundary

1 inch = 400 feet

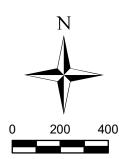
Date: 8/20/2021



KFRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING

<u>Legend</u>

Proposed 10-Year Inundation Boundary Proposed Channel Maintenance Onion Creek District Park Parcels

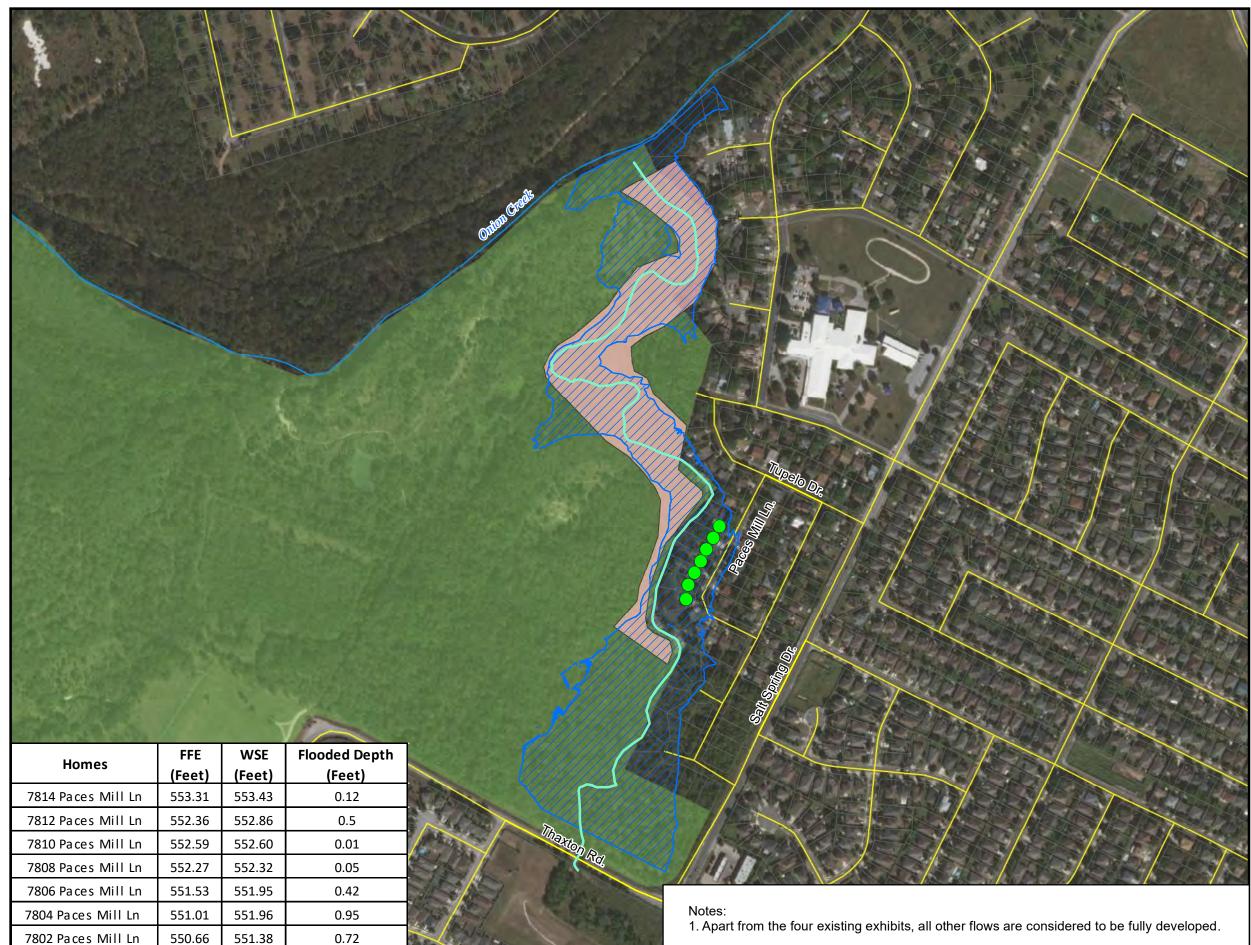

Paces Mill Tributary Centerline

Onion Creek Centerline

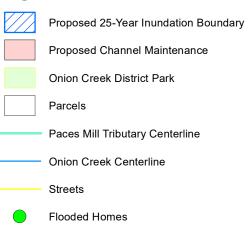
Streets

City of Austin Paces Mill Lane **Flood Risk Reduction**

Channel Maintenance Proposed 10-Year Inundation Boundary


1 inch = 400 feet

Date: 8/20/2021



KFRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING



Legend

City of Austin Paces Mill Lane **Flood Risk Reduction**

Channel Maintenance Proposed 25-Year Inundation Boundary

1 inch = 400 feet

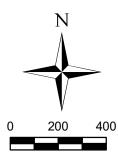
Date: 8/20/2021

KFRIESE + ASSOCIATES

PUBLIC PROJECT ENGINEERING

Homes	FFE (Feet)	WSE (Feet)	Flooded Depth (Feet)	
7816 Paces Mill Ln	554.39	554.76	0.37	
7814 Paces Mill Ln	553.31	554.55	1.24	
7812 Paces Mill Ln	552.36	554.00	1.64	
7810 Paces Mill Ln	552.59	553.62	1.03	
7808 Paces Mill Ln	552.27	553.35	1.08	These Rel
7806 Paces Mill Ln	551.53	553.1	1.57	
7804 Paces Mill Ln	551.01	553.09	2.08	
7802 Paces Mill Ln	550.66	552.82	2.16	Notes: 1. Apart from the four existing exhibits, all other flows are considered to be fully of
7800 Paces Mill Ln	551.21	552.62	1.41	

developed.

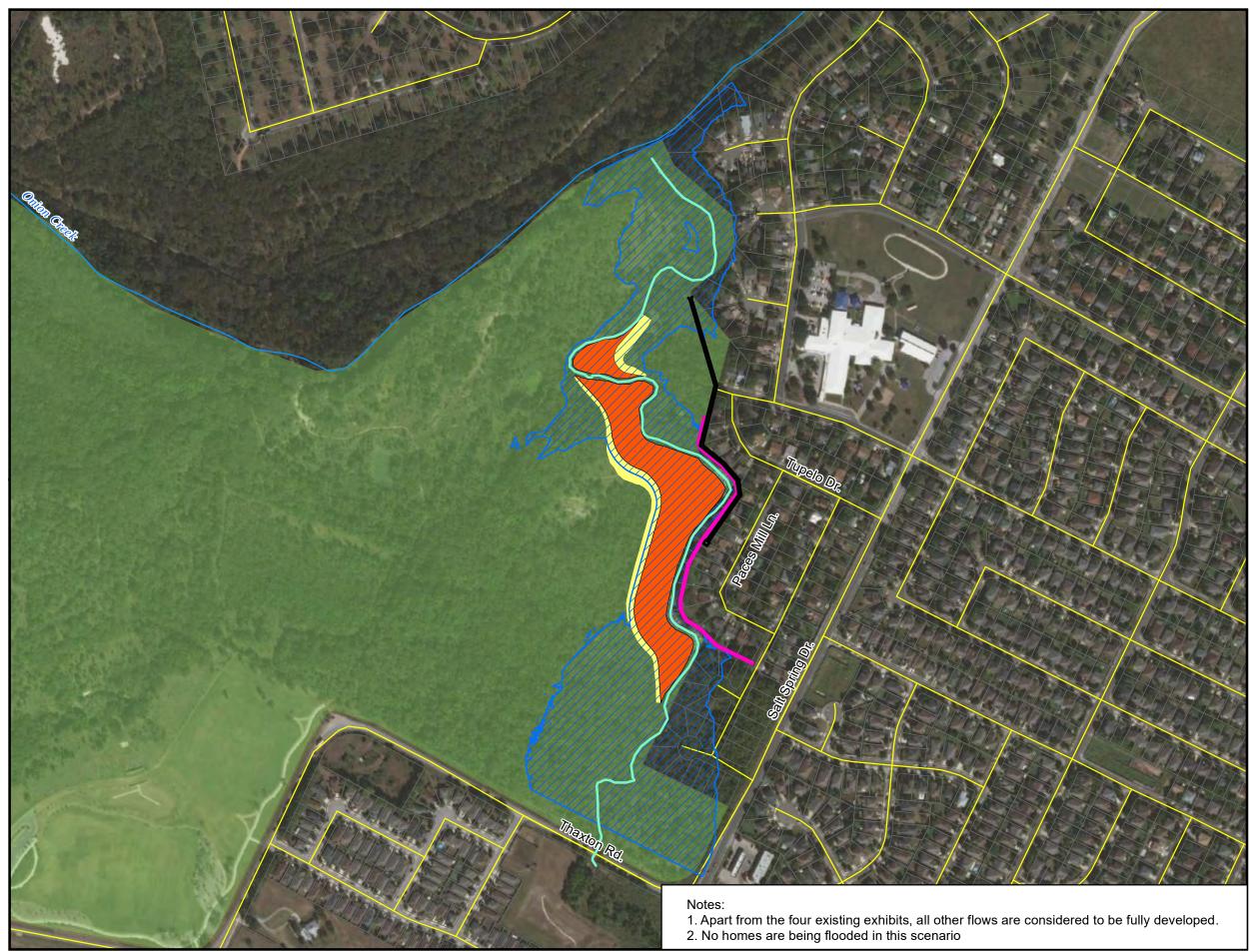

Legend Proposed 10 Proposed C

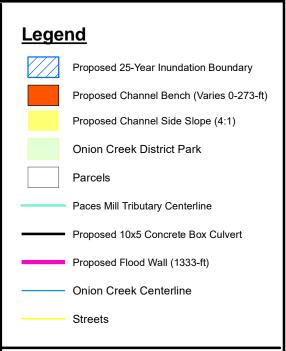
Proposed 100-Year Inundation Boundary
Proposed Channel Maintenance
Onion Creek District Park
Parcels
Paces Mill Tributary Centerline
Onion Creek Centerline
Streets

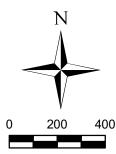
Flooded Homes

City of Austin Paces Mill Lane Flood Risk Reduction

Channel Maintenance Proposed 100-Year Inundation Boundary

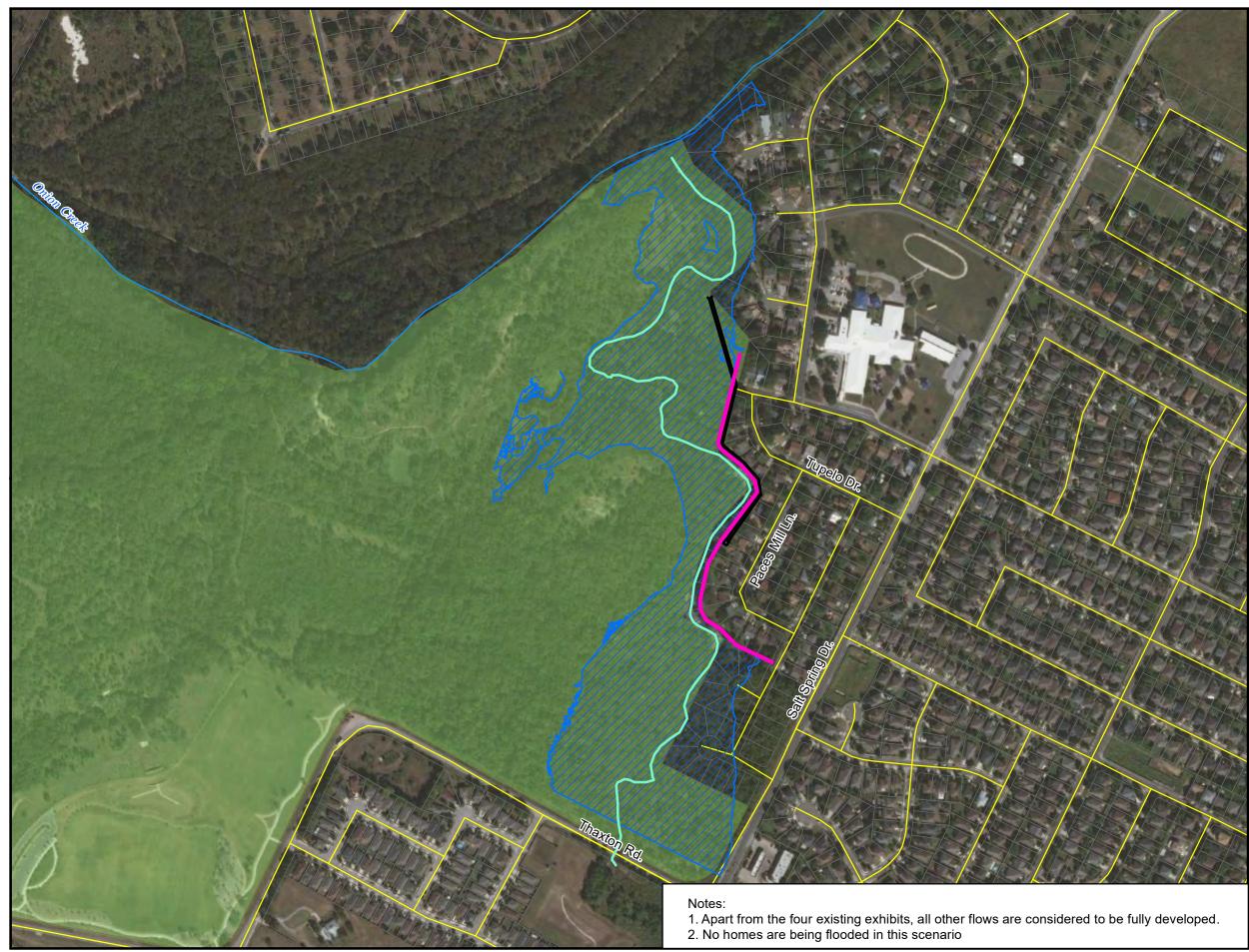

1 inch = 400 feet


Date: 8/20/2021

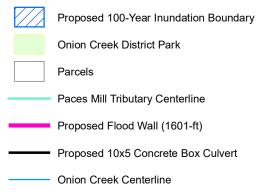

K + FRIESE + ASSOCIATES

City of Austin Paces Mill Lane **Flood Risk Reduction** 25-Year Natural Channel Flood Wall-Proposed

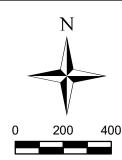
25-Year Inundation Boundary


1 inch = 400 feet

Date: 8/20/2021



KFRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING



Streets

City of Austin Paces Mill Lane **Flood Risk Reduction** Flood Wall

Proposed 100-Year Inundation Boundary

1 inch = 400 feet

Date: 8/20/2021

KFRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING

Appendix F: Primary Analysis Engineer's Opinion of Probable Cost (OPC)

ALT 1F - BYPASS CULVERTS

BID ITEM NO.	ITEM DESCRIPTION	UNIT	QTY.	UNIT COST	Т	OTAL COST
102S-C	CLEARING AND GRUBBING	LS		10%	\$	487,402.50
111S-A	EXCAVATION	CY	8250	\$ 50.00	\$	412,500.00
	CAST-IN-PLACE PORTLAND CEMENT					
414S-C	CONCRETE RETAINING WALL, INCLUDING	CY	85	\$ 1,500.00	\$	127,500.00
	REINFORCEMENT					
509S-1	TRENCH EXCAVATION SAFETY PROTECTIVE	LF	1800	\$ 10.00	\$	18,000.00
	SYSTEMS, (ALL DEPTHS)					
559S-10X8	PRECAST CONCRETE BOX CULVERTS, 12 FT X 10 FT	LF	1800	\$ 2,000.00	\$	3,600,000.00
591S-A	DRY ROCK RIPRAP, D50 = 18 IN	SY	0	\$ 130.00	\$	_
5918-F	CONCRETE RIPRAP, 6 IN	SY	650	\$ 300.00	Ψ \$	195,000.00
	NATIVE SEEDING FOR EROSION CONTROL.			*	Ŧ	
604S-E	BROADCAST SEEDING	SY	13350	\$ 1.50	\$	20,025.00
605S	SOIL RETENTION BLANKET CLASS 2; TYPE H,	SY	8150	\$ 10.00	\$	81,500.00
6055	COMPLETE AND IN PLACE	51	0150	φ 10.00	ф	61,500.00
608S-1	PLANTING TYPE _, SIZE IN INCHES _	EA	0		\$	-
608S-2	IRRIGATION SYSTEM	LS	1	\$ 15,000.00	\$	15,000.00
609S-A	TOPSOIL AND SEEDBED PREPARATION	SY	13350	\$ 15.00	\$	200,250.00
609S-C	NATIVE SEEDING	SY	13350	\$ 5.00	\$	66,750.00
610S-A	PROTECTIVE FENCING TYPE A CHAIN LINK FENCE	LF	2500	\$ 4.00	\$	10,000.00
639S	ROCK BERM	LF	300	\$ 45.00	\$	13,500.00
641S	STABILIZED CONSTRUCTION ENTRANCE	EA	2	\$ 3,500.00	\$	7,000.00
642S	SILT FENCE FOR EROSION CONTROL	LF	2500	\$ 10.00	\$	25,000.00
700S-TM	TOTAL MOBILIZATION PAYMENT	LS	1	5%	\$	268,071.38
802S-A	PROJECT SIGN	EA	2	\$ 1,000.00	\$	2,000.00
803S-MO	BARRICADES, SIGNS, AND TRAFFIC HANDLING	MO	6	\$ 5,000.00	\$	30,000.00
SS1000	COFFER DAM & SITE DEWATERING	LS	1	\$ 50,000.00	\$	50,000.00
SP610S	TREE REMOVAL	AC	2	\$ 345,000.00	\$	517,500.00
CONSTRUCTION SUBT	OTAL				\$	6,146,998.88
	CONTINGENCY (30% OF SUBTOTAL)				\$	1,844,099.66
CONSTRUCTION COST	ESTIMATE				\$	7,991,098.54

ALT 2A - 10YR NATURAL CHANNEL

ALIZA - 10TR NATORAL CHANNEL							
BID ITEM NO.	ITEM DESCRIPTION	UNIT	QTY.	U			OTAL COST
102S-C	CLEARING AND GRUBBING	LS			10%		225,950.00
111S-A	EXCAVATION	CY	27000	\$	50.00	\$	1,350,000.00
	CAST-IN-PLACE PORTLAND CEMENT						
414S-C	CONCRETE RETAINING WALL, INCLUDING	CY	0	\$	1,500.00	\$	-
	REINFORCEMENT						
509S-1	TRENCH EXCAVATION SAFETY PROTECTIVE	ΙF	0	\$	10.00	\$	-
	SYSTEMS, (ALL DEPTHS)		Ū.	Ť		Ŧ	
559S-10X8	PRECAST CONCRETE BOX CULVERTS, 10 FT X	LF	0	\$	2,000.00	\$	-
	12 FT		-				
591S-A	DRY ROCK RIPRAP, D50 = 18 IN	SY	0	\$	130.00	\$	-
591S-F	CONCRETE RIPRAP, 6 IN	SY	0	\$	300.00	\$	-
604S-E	NATIVE SEEDING FOR EROSION CONTROL,	SY	23000	\$	1.50	\$	34,500.00
	BROADCAST SEEDING			•		+	,
605S	SOIL RETENTION BLANKET CLASS 2; TYPE H,	SY	23000	\$	10.00	\$	230,000.00
	COMPLETE AND IN PLACE			ŗ		, ,	,
608S-1	PLANTING TYPE _, SIZE IN INCHES _	EA	0		(=	\$	-
608S-2	IRRIGATION SYSTEM	LS	1	\$	15,000.00	\$	15,000.00
609S-A	TOPSOIL AND SEEDBED PREPARATION	SY	23000	\$	15.00	\$	345,000.00
609S-C	NATIVE SEEDING	SY	23000	\$	5.00	\$	115,000.00
610S-A	PROTECTIVE FENCING TYPE A CHAIN LINK FENCE	LF	3000	\$	4.00	\$	12,000.00
639S	ROCK BERM	LF	200	\$	45.00	\$	9,000.00
641S	STABILIZED CONSTRUCTION ENTRANCE	EA	2	\$	3,500.00	\$	7,000.00
642S	SILT FENCE FOR EROSION CONTROL	LF	3000	\$	10.00	\$	30,000.00
700S-TM	TOTAL MOBILIZATION PAYMENT	LS	1		5%	\$	124,272.50
802S-A	PROJECT SIGN	EA	2	\$	1,000.00	\$	2,000.00
803S-MO	BARRICADES, SIGNS, AND TRAFFIC HANDLING	MO	12	\$	5,000.00	\$	60,000.00
SS1000	COFFER DAM & SITE DEWATERING	LS	1	\$	50,000.00	\$	50,000.00
SP610S	TREE REMOVAL	AC	5	\$ 3	345,000.00	\$	1,725,000.00
CONSTRUCTION	SUBTOTAL					\$	4,334,722.50
	CONTINGENCY (30% OF SUBTOTAL)					\$	1,300,416.75
CONSTRUCTION	COST ESTIMATE					\$	5,635,139.25

ALT 2B - 25YR NATURAL CHANNEL

BID ITEM NO.	ITEM DESCRIPTION	UNIT	-	UNI	T COST	Т	OTAL COST
102S-C	CLEARING AND GRUBBING	LS	0		10%	\$	423,450.00
111S-A	EXCAVATION	CY	59000	\$	50.00	\$	2,950,000.00
414S-C	CAST-IN-PLACE PORTLAND CEMENT CONCRETE RETAINING WALL, INCLUDING REINFORCEMENT	СҮ	0	\$	1,500.00	\$	-
509S-1	TRENCH EXCAVATION SAFETY PROTECTIVE SYSTEMS, (ALL DEPTHS)	LF	0	\$	10.00	\$	-
559S-10X8	PRECAST CONCRETE BOX CULVERTS, 10 FT X 12 FT	LF	0	\$	2,000.00	\$	-
591S-A	DRY ROCK RIPRAP, D50 = 18 IN	SY	100	\$	130.00	\$	13,000.00
591S-F	CONCRETE RIPRAP, 6 IN	SY	0	\$	300.00	\$	-
604S-E	NATIVE SEEDING FOR EROSION CONTROL, BROADCAST SEEDING	SY	35000	\$	1.50	\$	52,500.00
605S	SOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE	SY	35000	\$	10.00	\$	350,000.00
608S-1	PLANTING TYPE _, SIZE IN INCHES _	EA				\$	-
608S-2	IRRIGATION SYSTEM	LS	1	\$	15,000.00	\$	15,000.00
609S-A	TOPSOIL AND SEEDBED PREPARATION	SY	35000	\$	15.00	\$	525,000.00
609S-C	NATIVE SEEDING	SY	35000	\$	5.00	\$	175,000.00
610S-A	PROTECTIVE FENCING TYPE A CHAIN LINK FENCE	LF	4000	\$	4.00	\$	16,000.00
639S	ROCK BERM	LF	200	\$	45.00	\$	9,000.00
641S	STABILIZED CONSTRUCTION ENTRANCE	EA	2	\$	3,500.00	\$	7,000.00
642S	SILT FENCE FOR EROSION CONTROL	LF	4000	\$	10.00	\$	40,000.00
700S-TM	TOTAL MOBILIZATION PAYMENT	LS	1		5%	\$	353,647.50
802S-A	PROJECT SIGN	EA	2	\$	1,000.00	\$	2,000.00
803S-MO	BARRICADES, SIGNS, AND TRAFFIC	MO	6	\$	5,000.00	\$	30,000.00
SS1000	COFFER DAM & SITE DEWATERING	LS	1	\$	50,000.00	\$	50,000.00
SP610S	TREE REMOVAL	AC	7		345,000.00	\$	2,415,000.00
CONSTRUCTION SUB	TOTAL					\$	7,426,597.50
	CONTINGENCY (30% OF SUBTOTAL)					\$	2,227,979.25
CONSTRUCTION COS	TESTIMATE					\$	9,654,576.75

ALT 2C - 100YR NATURAL CHANNEL

BID ITEM NO.	ITEM DESCRIPTION	UNIT	QTY.	ι	UNIT COST	Т	OTAL COST
102S-C	CLEARING AND GRUBBING	LS			10%	\$	658,750.00
111S-A	EXCAVATION	CY	115000	\$	50.00	\$	5,750,000.00
414S-C	CAST-IN-PLACE PORTLAND CEMENT CONCRETE RETAINING WALL, INCLUDING REINFORCEMENT	СҮ	0	\$	1,500.00	\$	-
509S-1	TRENCH EXCAVATION SAFETY PROTECTIVE SYSTEMS, (ALL DEPTHS)	LF	0	\$	10.00	\$	-
559S-10X8	PRECAST CONCRETE BOX CULVERTS, 10 FT X 12 FT	LF	0	\$	2,000.00	\$	-
591S-A	DRY ROCK RIPRAP, D50 = 18 IN	SY	0	\$	130.00	\$	-
591S-F	CONCRETE RIPRAP, 6 IN	SY	0	\$	300.00	\$	-
604S-E	NATIVE SEEDING FOR EROSION CONTROL, BROADCAST SEEDING	SY	54000	\$	1.50	\$	81,000.00
605S	SOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE	SY	54000	\$	10.00	\$	540,000.00
608S-1	PLANTING TYPE , SIZE IN INCHES	EA					
608S-2	IRRIGATION SYSTEM	LS	1	\$	15,000.00		
609S-A	TOPSOIL AND SEEDBED PREPARATION	SY	54000	\$	15.00		
609S-C	NATIVE SEEDING	SY	54000	\$	5.00		
610S-A	PROTECTIVE FENCING TYPE A CHAIN LINK FENCE	LF	4500	\$	4.00		
639S	ROCK BERM	LF	500	\$	45.00	\$	22,500.00
641S	STABILIZED CONSTRUCTION ENTRANCE	EA	2	\$	3,500.00	\$	7,000.00
642S	SILT FENCE FOR EROSION CONTROL	LF	4500	\$	10.00	\$	45,000.00
700S-TM	TOTAL MOBILIZATION PAYMENT	LS	1		5%	\$	362,312.50
802S-A	PROJECT SIGN	EA	2	\$	1,000.00	\$	2,000.00
803S-MO	BARRICADES, SIGNS, AND TRAFFIC HANDLING	MO	18	\$	5,000.00	\$	90,000.00
SS1000	COFFER DAM & SITE DEWATERING	LS	1	\$	50,000.00	\$	50,000.00
SP610S	TREE REMOVAL	AC	12	\$	345,000.00	\$	4,140,000.00
CONSTRUCTION SUB	ΤΟΤΑL					\$	11,748,562.50
	CONTINGENCY (30% OF SUBTOTAL)					\$	3,524,568.75
CONSTRUCTION COS	TESTIMATE					\$	15,273,131.25

ALT 2F - CHANNEL MAINTENANCE

BID ITEM NO.	ITEM DESCRIPTION	UNIT	QTY.	l	JNIT COST	ТС	TAL COST
102S-C	CLEARING AND GRUBBING	LS			10%	\$	8.900.00
111S-A	EXCAVATION	CY	0	\$	50.00	\$	-
	CAST-IN-PLACE PORTLAND CEMENT		-	Ŧ		Ŧ	
414S-C	CONCRETE RETAINING WALL, INCLUDING	CY	0	\$	1,500.00	\$	-
	REINFORCEMENT				,		
5000.4	TRENCH EXCAVATION SAFETY PROTECTIVE	LF	0	۴	10.00	¢	
509S-1	SYSTEMS, (ALL DEPTHS)	LF	0	\$	10.00	\$	-
559S-10X8	PRECAST CONCRETE BOX CULVERTS, 10 FT X	LF	0	¢	2.000.00	\$	
5595-1076	12 FT		U	\$	2,000.00	φ	-
591S-A	DRY ROCK RIPRAP, D50 = 18 IN	SY	0	\$	130.00	\$	-
591S-F	CONCRETE RIPRAP, 6 IN	SY	0	\$	300.00	\$	-
604S-E	NATIVE SEEDING FOR EROSION CONTROL,	SY	0	\$	1.50	\$	_
0040-L	BROADCAST SEEDING	01	0	Ψ	1.50	Ψ	_
605S	SOIL RETENTION BLANKET CLASS 2; TYPE H,	SY	0	\$	10.00	\$	_
	COMPLETE AND IN PLACE			Ψ	10.00		_
608S-1	PLANTING TYPE _, SIZE IN INCHES _	EA	0			\$	-
608S-2	IRRIGATION SYSTEM	LS	0	\$	15,000.00	\$	-
609S-A	TOPSOIL AND SEEDBED PREPARATION	SY	0	\$	15.00	\$	-
609S-C	NATIVE SEEDING	SY	0	\$	5.00	\$	-
610S-A	PROTECTIVE FENCING TYPE A CHAIN LINK FENCE	LF	0	\$	4.00	\$	-
639S	ROCK BERM	LF	0	\$	45.00	\$	-
641S	STABILIZED CONSTRUCTION ENTRANCE	EA	2	\$	3,500.00	\$	7,000.00
642S	SILT FENCE FOR EROSION CONTROL	LF	0	\$	10.00	\$	-
700S-TM	TOTAL MOBILIZATION PAYMENT	LS	1		5%	\$	0.05
802S-A	PROJECT SIGN	EA	2	\$	1,000.00	\$	2,000.00
803S-MO	BARRICADES, SIGINS, AND TRAFFIC	МО	6	\$	5,000.00	\$	30,000.00
SS1000	COFFER DAM & SITE DEWATERING	LS	1	\$	50,000.00	\$	50,000.00
SP610S	TREE REMOVAL	AC	2	\$	345,000.00	\$	690,000.00
CONSTRUCTION SUB						\$	787,900.05
	CONTINGENCY (30% OF SUBTOTAL)					\$	236,370.02
CONSTRUCTION COST	T ESTIMATE			-		\$	1,024,270.07

ALT 3A - 25YR ENGINEERED CHANNEL

BID ITEM NO.	ITEM DESCRIPTION	UNIT	QTY.	UNIT COST	Т	OTAL COST
102S-C	CLEARING AND GRUBBING	LS	ω(Π.	10%		158,825.00
1025-C	EXCAVATION	CY	19000	\$ 50.00	э \$,
1115-A	CAST-IN-PLACE PORTLAND CEMENT	Cř	19000	δ 50.00	þ	950,000.00
414S-C	CONCRETE RETAINING WALL, INCLUDING	CY	0	\$ 1,500.00	\$	
4143-0	REINFORCEMENT	CT	0	φ 1,500.00	φ	-
	TRENCH EXCAVATION SAFETY PROTECTIVE					
509S-1	SYSTEMS, (ALL DEPTHS)	LF	0	\$ 10.00	\$	-
	PRECAST CONCRETE BOX CULVERTS, 10 FT X					
559S-10X8	12 FT	LF	0	\$ 2,000.00	\$	-
591S-A	DRY ROCK RIPRAP, D50 = 18 IN	SY	0	\$ 130.00	\$	-
591S-F	CONCRETE RIPRAP, 6 IN	SY	0	\$ 300.00	\$	-
604S-E	NATIVE SEEDING FOR EROSION CONTROL,	SY	40500		¢	20.250.00
604S-E	BROADCAST SEEDING	Sr	13500	\$ 1.50	\$	20,250.00
605S	SOIL RETENTION BLANKET CLASS 2; TYPE H,	SY	13500	\$ 10.00	\$	135,000.00
0053	COMPLETE AND IN PLACE	51	13500	φ 10.00	φ	135,000.00
608S-1	PLANTING TYPE _, SIZE IN INCHES _	EA			\$	-
608S-2	IRRIGATION SYSTEM	LS	1	\$ 15,000.00	\$	15,000.00
609S-A	TOPSOIL AND SEEDBED PREPARATION	SY	13500	\$ 15.00	\$	202,500.00
609S-C	NATIVE SEEDING	SY	13500	\$ 5.00	\$	67,500.00
610S-A	PROTECTIVE FENCING TYPE A CHAIN LINK	LF	5000	\$ 4.00	\$	20,000.00
	FENCE				•	
639S	ROCK BERM	LF	200	\$ 45.00	\$	9,000.00
641S	STABILIZED CONSTRUCTION ENTRANCE	EA	2	\$ 3,500.00	\$	7,000.00
642S	SILT FENCE FOR EROSION CONTROL	LF	5000	\$ 10.00	\$	50,000.00
700S-TM	TOTAL MOBILIZATION PAYMENT	LS	1	5%	\$	87,353.75
802S-A	PROJECT SIGN	EA	2	\$ 1,000.00	\$	2,000.00
803S-MO	DARRICADES, SIGNS, AND TRAFFIC	MO	12	\$ 5,000.00	\$	60,000.00
SS1000	COFFER DAM & SITE DEWATERING	LS	1	\$ 50,000.00	\$	50,000.00
SP610S	TREE REMOVAL	AC	3	\$ 345,000.00	\$	1,035,000.00
CONSTRUCTION SUB	ΤΟΤΑL					2,869,428.75
	CONTINGENCY (30% OF SUBTOTAL)				\$	860,828.63
CONSTRUCTION COS	TESTIMATE				\$	3,730,257.38

ALT 3B - 100YR ENGINEERED CHANNEL

ALT 3B - 100TR ENGINEERED CHANNEL							
BID ITEM NO.	ITEM DESCRIPTION	UNIT	QTY.	UNIT COST		OTAL COST	
102S-C	CLEARING AND GRUBBING	LS		10%		206,880.00	
111S-A	EXCAVATION	CY	26000	\$ 50.00	\$	1,300,000.00	
414S-C	CAST-IN-PLACE PORTLAND CEMENT CONCRETE RETAINING WALL, INCLUDING REINFORCEMENT	CY	0	\$ 1,500.00	\$	-	
509S-1	TRENCH EXCAVATION SAFETY PROTECTIVE SYSTEMS, (ALL DEPTHS)	LF	0	\$ 10.00	\$	-	
559S-10X8	PRECAST CONCRETE BOX CULVERTS, 10 FT X 12 FT	LF	0	\$ 2,000.00	\$	-	
591S-A	DRY ROCK RIPRAP, D50 = 18 IN	SY	0	\$ 130.00	\$	-	
591S-F	CONCRETE RIPRAP, 6 IN	SY	0	\$ 300.00	\$	-	
604S-E	NATIVE SEEDING FOR EROSION CONTROL, BROADCAST SEEDING	SY	18000	\$ 1.50	\$	27,000.00	
605S	SOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE	SY	18000	\$ 10.00	\$	180,000.00	
608S-1	PLANTING TYPE _, SIZE IN INCHES _	EA	0		\$	-	
608S-2	IRRIGATION SYSTEM	LS	1	\$ 15,000.00	\$	15,000.00	
609S-A	TOPSOIL AND SEEDBED PREPARATION	SY	18000	\$ 15.00	\$	270,000.00	
609S-C	NATIVE SEEDING	SY	18000	\$ 5.00	\$	90,000.00	
610S-A	PROTECTIVE FENCING TYPE A CHAIN LINK FENCE	LF	4200	\$ 4.00	\$	16,800.00	
639S	ROCK BERM	LF	200	\$ 45.00		9,000.00	
641S	STABILIZED CONSTRUCTION ENTRANCE	EA	2	\$ 3,500.00	\$	7,000.00	
642S	SILT FENCE FOR EROSION CONTROL	LF	4200	\$ 10.00		42,000.00	
700S-TM	TOTAL MOBILIZATION PAYMENT	LS	1	5%	б\$	113,784.00	
802S-A	PROJECT SIGN	EA	2	\$ 1,000.00	\$	2,000.00	
803S-MO	BARRICADES, SIGNS, AND TRAFFIC	MO	12	\$ 5,000.00	\$	60,000.00	
SS1000	COFFER DAM & SITE DEWATERING	LS	1	\$ 50,000.00	\$	50,000.00	
SP610S	TREE REMOVAL	AC	4	\$ 345,000.00		1,380,000.00	
CONSTRUCTION SUB	TOTAL			· · ·	-	3,769,464.00	
	CONTINGENCY (30% OF SUBTOTAL)				\$	1,130,839.20	
CONSTRUCTION COS	TESTIMATE				\$	4,900,303.20	

ALT 4A - 25YR NATURAL CHANNEL PLUS FLOODWALL

102S-CCLEARING AND GRUBBING111S-AEXCAVATION414S-CCAST-IN-PLACE PORTLAND CEMENT CONCRETE RETAINING WALL, INCLUDING REINFORCEMENT509S-1TRENCH EXCAVATION SAFETY PROTECTIVE SYSTEMS, (ALL DEPTHS)559S-10X8PRECAST CONCRETE BOX CULVERTS, 10 FT X 5 FT506S-J12X6X6JUNCTION BOX (12FT. X 6 FT. X 6 FT.)591S-ADRY ROCK RIPRAP, 050 = 18 IN604S-ENATIVE SEEDING FOR EROSION CONTROL, BROADCAST SEEDING605SSOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE608S-1PLANTING TYPE _, SIZE IN INCHES _ 608S-2609S-ATOPSOIL AND SEEDBED PREPARATION609S-CNATIVE SEEDING610S-APROTECTIVE FENCING TYPE A CHAIN LINK FENCE	CY LF LF EA SY SY	QTY. 0 59000 1333 1150 1150 3 100 0	\$ \$ \$ \$ \$	T COST 10% 50.00 1,500.00 10.00 1,000.00	\$ \$ \$	OTAL COST 752,050.00 2,950,000.00 1,999,500.00 11,500.00
111S-A EXCAVATION 414S-C CAST-IN-PLACE PORTLAND CEMENT CONCRETE RETAINING WALL, INCLUDING REINFORCEMENT 509S-1 TRENCH EXCAVATION SAFETY PROTECTIVE S59S-10X8 PRECAST CONCRETE BOX CULVERTS, 10 FT X 5 FT 506S-J12X6X6 JUNCTION BOX (12FT. X 6 FT. X 6 FT.) 591S-A DRY ROCK RIPRAP, D50 = 18 IN 591S-F CONCRETE RIPRAP, 6 IN 604S-E NATIVE SEEDING FOR EROSION CONTROL, BROADCAST SEEDING SOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE 608S-1 608S-2 IRRIGATION SYSTEM 609S-A TOPSOIL AND SEEDBED PREPARATION 609S-C NATIVE SEEDING 610S-A PROTECTIVE FENCING TYPE A CHAIN LINK	CY CY LF LF EA SY SY	59000 1333 1150 1150 3 100	\$ \$ \$ \$	50.00 1,500.00 10.00	\$	2,950,000.00 1,999,500.00
414S-CCAST-IN-PLACE PORTLAND CEMENT CONCRETE RETAINING WALL, INCLUDING REINFORCEMENT509S-1TRENCH EXCAVATION SAFETY PROTECTIVE SYSTEMS, (ALL DEPTHS)559S-10X8PRECAST CONCRETE BOX CULVERTS, 10 FT X 5 FT506S-J12X6X6JUNCTION BOX (12FT. X 6 FT. X 6 FT.)591S-ADRY ROCK RIPRAP, D50 = 18 IN591S-FCONCRETE RIPRAP, 6 IN604S-ENATIVE SEEDING FOR EROSION CONTROL, BROADCAST SEEDING605SSOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE608S-1PLANTING TYPE_, SIZE IN INCHES_ 608S-2609S-ATOPSOIL AND SEEDBED PREPARATION 609S-C610S-APROTECTIVE FENCING TYPE A CHAIN LINK FENCE	CY LF LF EA SY SY	1333 1150 1150 3 100	\$ \$ \$ \$	1,500.00 10.00	\$	1,999,500.00
414S-CCONCRETE RETAINING WALL, INCLUDING REINFORCEMENT509S-1TRENCH EXCAVATION SAFETY PROTECTIVE SYSTEMS, (ALL DEPTHS)559S-10X8PRECAST CONCRETE BOX CULVERTS, 10 FT X 5 FT506S-J12X6X6JUNCTION BOX (12FT. X 6 FT. X 6 FT.)591S-ADRY ROCK RIPRAP, D50 = 18 IN591S-FCONCRETE RIPRAP, 6 IN604S-ENATIVE SEEDING FOR EROSION CONTROL, BROADCAST SEEDING605SSOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE608S-1PLANTING TYPE_, SIZE IN INCHES_608S-2IRRIGATION SYSTEM609S-CNATIVE SEEDING610S-APROTECTIVE FENCING TYPE A CHAIN LINK FENCE	LF LF EA SY SY	1150 1150 3 100	\$ \$ \$	10.00	\$	
REINFORCEMENT509S-1TRENCH EXCAVATION SAFETY PROTECTIVE SYSTEMS, (ALL DEPTHS)559S-10X8PRECAST CONCRETE BOX CULVERTS, 10 FT X 5 FT506S-J12X6X6JUNCTION BOX (12FT. X 6 FT. X 6 FT.)591S-ADRY ROCK RIPRAP, 050 = 18 IN 591S-F604S-ENATIVE SEEDING FOR EROSION CONTROL, BROADCAST SEEDING605SSOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE608S-1PLANTING TYPE_, SIZE IN INCHES_ 608S-2609S-ATOPSOIL AND SEEDBED PREPARATION 609S-C610S-APROTECTIVE FENCING TYPE A CHAIN LINK FENCE	LF LF EA SY SY	1150 1150 3 100	\$ \$ \$	10.00	\$	
509S-1TRENCH EXCAVATION SAFETY PROTECTIVE SYSTEMS, (ALL DEPTHS)559S-10X8PRECAST CONCRETE BOX CULVERTS, 10 FT X 5 FT506S-J12X6X6JUNCTION BOX (12FT. X 6 FT. X 6 FT.)591S-ADRY ROCK RIPRAP, D50 = 18 IN 591S-F604S-ENATIVE SEEDING FOR EROSION CONTROL, BROADCAST SEEDING605SSOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE608S-1PLANTING TYPE_, SIZE IN INCHES_ 608S-2609S-ATOPSOIL AND SEEDBED PREPARATION 609S-C610S-APROTECTIVE FENCING TYPE A CHAIN LINK FENCE	LF EA SY SY	1150 3 100	\$		+	11,500.00
509S-1SYSTEMS, (ALL DEPTHS)559S-10X8PRECAST CONCRETE BOX CULVERTS, 10 FT X 5 FT506S-J12X6X6JUNCTION BOX (12FT. X 6 FT. X 6 FT.)591S-ADRY ROCK RIPRAP, D50 = 18 IN591S-FCONCRETE RIPRAP, 6 IN604S-ENATIVE SEEDING FOR EROSION CONTROL, BROADCAST SEEDING605SSOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE608S-1PLANTING TYPE_, SIZE IN INCHES_608S-2IRRIGATION SYSTEM609S-ATOPSOIL AND SEEDBED PREPARATION609S-CNATIVE SEEDING610S-APROTECTIVE FENCING TYPE A CHAIN LINK FENCE	LF EA SY SY	1150 3 100	\$		+	11,500.00
SYSTEMS, (ALL DEPTHS)559S-10X8PRECAST CONCRETE BOX CULVERTS, 10 FT X 5 FT506S-J12X6X6JUNCTION BOX (12FT. X 6 FT. X 6 FT.)591S-ADRY ROCK RIPRAP, D50 = 18 IN591S-FCONCRETE RIPRAP, 6 IN604S-EBROADCAST SEEDING605SSOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE608S-1PLANTING TYPE_, SIZE IN INCHES_608S-2IRRIGATION SYSTEM609S-ATOPSOIL AND SEEDBED PREPARATION609S-CNATIVE SEEDING610S-APROTECTIVE FENCING TYPE A CHAIN LINK FENCE	LF EA SY SY	1150 3 100	\$		+	11,300.00
559S-10X8 5 FT 506S-J12X6X6 JUNCTION BOX (12FT. X 6 FT. X 6 FT.) 591S-A DRY ROCK RIPRAP, D50 = 18 IN 591S-F CONCRETE RIPRAP, 6 IN 604S-E NATIVE SEEDING FOR EROSION CONTROL, BROADCAST SEEDING 605S SOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE 608S-1 PLANTING TYPE_, SIZE IN INCHES_ 609S-A TOPSOIL AND SEEDBED PREPARATION 609S-C NATIVE SEEDING 610S-A PROTECTIVE FENCING TYPE A CHAIN LINK FENCE	EA SY SY	3 100	\$	1,000.00	¢	
5 FT 506S-J12X6X6 JUNCTION BOX (12FT. X 6 FT. X 6 FT.) 591S-A DRY ROCK RIPRAP, D50 = 18 IN 591S-F CONCRETE RIPRAP, 6 IN 604S-E NATIVE SEEDING FOR EROSION CONTROL, BROADCAST SEEDING 605S SOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE 608S-1 PLANTING TYPE_, SIZE IN INCHES_ 609S-A TOPSOIL AND SEEDBED PREPARATION 609S-C NATIVE SEEDING 610S-A PROTECTIVE FENCING TYPE A CHAIN LINK FENCE	EA SY SY	3 100	\$	1,000.00		1,150,000.00
591S-A DRY ROCK RIPRAP, D50 = 18 IN 591S-F CONCRETE RIPRAP, 6 IN 604S-E NATIVE SEEDING FOR EROSION CONTROL, BROADCAST SEEDING 605S SOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE 608S-1 PLANTING TYPE_, SIZE IN INCHES_ 609S-2 IRRIGATION SYSTEM 609S-A TOPSOIL AND SEEDBED PREPARATION 609S-C NATIVE SEEDING 610S-A PROTECTIVE FENCING TYPE A CHAIN LINK FENCE	SY SY	100			Ψ	1,150,000.00
591S-F CONCRETE RIPRAP, 6 IN 604S-E NATIVE SEEDING FOR EROSION CONTROL, BROADCAST SEEDING 605S SOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE 608S-1 PLANTING TYPE_, SIZE IN INCHES_ 608S-2 IRRIGATION SYSTEM 609S-A TOPSOIL AND SEEDBED PREPARATION 609S-C NATIVE SEEDING 610S-A PROTECTIVE FENCING TYPE A CHAIN LINK FENCE	SY		^	20,000.00	\$	60,000.00
604S-E NATIVE SEEDING FOR EROSION CONTROL, BROADCAST SEEDING 605S SOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE 608S-1 PLANTING TYPE_, SIZE IN INCHES_ 608S-2 IRRIGATION SYSTEM 609S-A TOPSOIL AND SEEDBED PREPARATION 609S-C NATIVE SEEDING 610S-A PROTECTIVE FENCING TYPE A CHAIN LINK FENCE		0	\$	130.00	\$	13,000.00
604S-E BROADCAST SEEDING 605S SOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE 608S-1 PLANTING TYPE_, SIZE IN INCHES_ 608S-2 IRRIGATION SYSTEM 609S-A TOPSOIL AND SEEDBED PREPARATION 609S-C NATIVE SEEDING 610S-A PROTECTIVE FENCING TYPE A CHAIN LINK FENCE	SY	0	\$	300.00	\$	-
BROADCAST SEEDING 605S SOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE 608S-1 PLANTING TYPE _, SIZE IN INCHES _ 608S-2 IRRIGATION SYSTEM 609S-A TOPSOIL AND SEEDBED PREPARATION 609S-C NATIVE SEEDING 610S-A PROTECTIVE FENCING TYPE A CHAIN LINK FENCE	01	35000	\$	1.50	\$	52,500.00
605S COMPLETE AND IN PLACE 608S-1 PLANTING TYPE _, SIZE IN INCHES _ 608S-2 IRRIGATION SYSTEM 609S-A TOPSOIL AND SEEDBED PREPARATION 609S-C NATIVE SEEDING 610S-A PROTECTIVE FENCING TYPE A CHAIN LINK FENCE FENCE		00000	Ψ	1.00	Ψ	02,000.00
COMPLETE AND IN PLACE 608S-1 PLANTING TYPE_, SIZE IN INCHES_ 608S-2 IRRIGATION SYSTEM 609S-A TOPSOIL AND SEEDBED PREPARATION 609S-C NATIVE SEEDING 610S-A PROTECTIVE FENCING TYPE A CHAIN LINK FENCE FENCE	SY	35000	\$	10.00	\$	350,000.00
608S-2 IRRIGATION SYSTEM 609S-A TOPSOIL AND SEEDBED PREPARATION 609S-C NATIVE SEEDING 610S-A PROTECTIVE FENCING TYPE A CHAIN LINK FENCE FENCE		00000	Ψ	10.00	•	000,000.00
609S-A TOPSOIL AND SEEDBED PREPARATION 609S-C NATIVE SEEDING 610S-A PROTECTIVE FENCING TYPE A CHAIN LINK FENCE FENCE	EA				\$	-
609S-C NATIVE SEEDING 610S-A PROTECTIVE FENCING TYPE A CHAIN LINK FENCE	LS	1	\$	15,000.00	\$	15,000.00
610S-A PROTECTIVE FENCING TYPE A CHAIN LINK FENCE		35000	\$	15.00	\$	525,000.00
610S-A FENCE	SY	35000	\$	5.00	\$	175,000.00
FENCE	LF	6500	\$	4.00	\$	26,000.00
639S ROCK BERM			-		•	
	LF	200	\$	45.00	\$	9,000.00
	EA	2	\$	3,500.00	\$	7,000.00
642S SILT FENCE FOR EROSION CONTROL	LF	6500	\$	10.00	\$	65,000.00
700S-TM TOTAL MOBILIZATION PAYMENT	LS	1		5%	\$	534,377.50
	EA	2	\$	1,000.00	\$	2,000.00
803S-MO	MO	12	\$	5,000.00	\$	60,000.00
	LS	1	\$	50,000.00	\$	50,000.00
	AC	7		345,000.00	Ŧ	2,415,000.00
	/.0	,	Ψ	010,000.00		11,221,927.50
CONTINGENCY (30% OF SUBTOTAL)						3,366,578.25
EASEMENT COST						2,486,866.80
CONSTRUCTION COST ESTIMATE					\$	14,588,505.75

ALT 5A - FLOODWALL ONLY

BID ITEM NO.	ITEM DESCRIPTION		QTY.	UNIT COST	TOTAL COST
102S-C	CLEARING AND GRUBBING	LS	0	10%	\$ 326,996.67
111S-A	EXCAVATION	CY	0	\$ 50.00	\$ 520,990.07
	CAST-IN-PLACE PORTLAND CEMENT	01	0	ψ 50.00	Ψ -
414S-C	CONCRETE RETAINING WALL, INCLUDING	CY	1228	\$ 1,500.00	\$ 1,841,666.67
	REINFORCEMENT	0.		φ 1,000.00	φ 1,011,000.01
	TRENCH EXCAVATION SAFETY PROTECTIVE				
509S-1	SYSTEMS, (ALL DEPTHS)	LF	1150	\$ 10.00	\$ 11,500.00
5500 4020	PRECAST CONCRETE BOX CULVERTS, 10 FT X		4450	¢ 1.000.00	¢ 4 450 000 00
559S-10X8	5 FT	LF	1150	\$ 1,000.00	\$ 1,150,000.00
506S-J12X6X6	JUNCTION BOX (12FT. X 6 FT. X 6 FT.)	EA	3	\$ 20,000.00	\$ 60,000.00
591S-A	DRY ROCK RIPRAP, D50 = 18 IN	SY	0	\$ 130.00	\$-
591S-F	CONCRETE RIPRAP, 6 IN	SY	0	\$ 300.00	\$-
604S-E	NATIVE SEEDING FOR EROSION CONTROL,	SY	2600	\$ 1.50	\$ 3,900.00
0040-L	BROADCAST SEEDING	01	2000	φ 1.50	φ 0,300.00
605S	SOIL RETENTION BLANKET CLASS 2; TYPE H,	SY	2600	\$ 10.00	\$ 26,000.00
	COMPLETE AND IN PLACE		2000	• 10.00	
608S-1	PLANTING TYPE _, SIZE IN INCHES _	EA			\$-
608S-2	IRRIGATION SYSTEM	LS	1	\$ 15,000.00	\$ 15,000.00
609S-A	TOPSOIL AND SEEDBED PREPARATION	SY	2600	\$ 15.00	\$ 39,000.00
609S-C	NATIVE SEEDING	SY	2600	\$ 5.00	\$ 13,000.00
610S-A	PROTECTIVE FENCING TYPE A CHAIN LINK FENCE	LF	2600	\$ 4.00	\$ 10,400.00
639S	ROCK BERM	LF	100	\$ 45.00	\$ 4,500.00
641S	STABILIZED CONSTRUCTION ENTRANCE	EA	2	\$ 3,500.00	\$ 7,000.00
642S	SILT FENCE FOR EROSION CONTROL	LF	2600	\$ 10.00	\$ 26,000.00
700S-TM	TOTAL MOBILIZATION PAYMENT	LS	1	5%	\$ 179,848.17
802S-A	PROJECT SIGN	EA	2	\$ 1,000.00	\$ 2,000.00
803S-MO	BARRICADES, SIGNS, AND TRAFFIC	MO	12	\$ 5,000.00	\$ 60,000.00
SS1000	COFFER DAM & SITE DEWATERING	LS	0	\$ 50,000.00	\$ -
CONSTRUCTION SUBT	TOTAL TOTAL				\$ 3,776,811.50
	CONTINGENCY (30% OF SUBTOTAL)				\$ 1,133,043.45
	EASEMENTS				\$ 2,486,866.80
CONSTRUCTION COST	ESTIMATE				\$ 4,909,854.95

Appendix G: Primary Analysis Primary Analysis Evaluation Rubric

Environmental Constraints and Permitting Efforts

Criteria	% of Points	Points
Minimal – Limited to no environmental impact or permitting effort	100%	10
Minimal to Moderate – Short term, moderate environmental impact during construction. Minimal environmental survey and permitting expected. Local site plan permitting, or variances required.	80%	8
Moderate – Short term impacts during construction. Environmental surveys required and local site plan permitting, or variances required. Nationwide or Individual permit likely required.	60%	6
Moderate to Significant – Long term, moderate environmental impact with permits among multiple jurisdictions. More challenging local site plan permitting, and Nationwide or Individual Permit likely required.	40%	4
Significant – Long term, significant environmental impact with significant permits among multiple jurisdictions	20%	2

Note: We will use the sampled ratings copied on the right.

Land and Easement Acquisition

Criteria	% of Points	Points
No easement or land acquisition required.	100%	15
Easement required, but no land acquisition is required.	80%	12
Land Acquisition is required, or project is generally limited to the existing channel boundary.	60%	9
Land Acquisition is required, or project overlaps with the Onion Creek Metro Park Master Plan.	40%	6
Land Acquisition is required, or project interferes with the Onion Creek Metro Park Master Plan.	20%	3

Notes: The buyout alternatives score the max points because the buyout becomes the project.

Potential Major Utility Impacts

Criteria	% of Points	Points
No impacts to major utilities	100%	5
Relocation of water, gas, AE, or Telecom	80%	4
Relocation of wastewater or storm water	60%	3
Relocation of more than 1 major utility	40%	2
Relocation of more than 2 major utilities	20%	1
Notes:		

Time Implementation

Criteria	% of Points	Points
Requires less than 1 year to implement project and complete project	100%	5
Requires more than 1 year, but less than 2 years to implement project and complete project	80%	4
Requires more than 2 years, but less than 3 years to implement project and complete project	60%	3
Requires more than 3 years, but less than 4 years to implement project and complete project	40%	2
Requires more than 4 years to implement project and complete project	20%	1
Notes:		

Social/Community Impacts

Criteria	% of Points	Points
Minimual - No displacement of homes, and no encumbrance on private property (e.g. by a drainage pipe, culvert, floodwall, or other structure)	100%	10
Moderate displacement of homes, and moderate encumbrance on public or private property (e.g. by a drainage pipe, culvert, floodwall, or other structure).	50%	5
Significant displacement of homes, and moderate encumbrance on public or private property (e.g. by a drainage pipe, culvert, floodwall, or other structure).	20%	2

Ecological Restoration

Criteria	% of Points	Points
Alternative increases floodplain heterogeneity, increases canopy cover, reduces soil compaction, increases cover of wetland vegetation	100%	10
Alternative increases floodplain heterogeneity, or increases canopy, or reduces soil compaction, or increases cover of wetland vegetation	75%	6
Alternative does not improve floodplain health parameters	50%	3
Alternative reduces rating of floodplain health parameters	0%	0

Source of parameters: Functional Assessment of Floodplain health

Note: Each alternative gets points for each of the three k	honofit that it provides. See the tr	able below for point valuation of each alternative
Note: Each alternative gets points for each of the three b	benefit that it provides. See the ta	

1

Criteria	% of Points	Max Points
Percentage of homes removed from 100YR flood plain i.e. FFE is higher than 100YR WSEL (out of 15)	50%	10
Percentage of homes that gain safe access to roadway in 100YR flood plain (out of 25)	30%	6
Percentage of homes that lose all floodplain from their property (out of 34)	20%	4
Total points		20

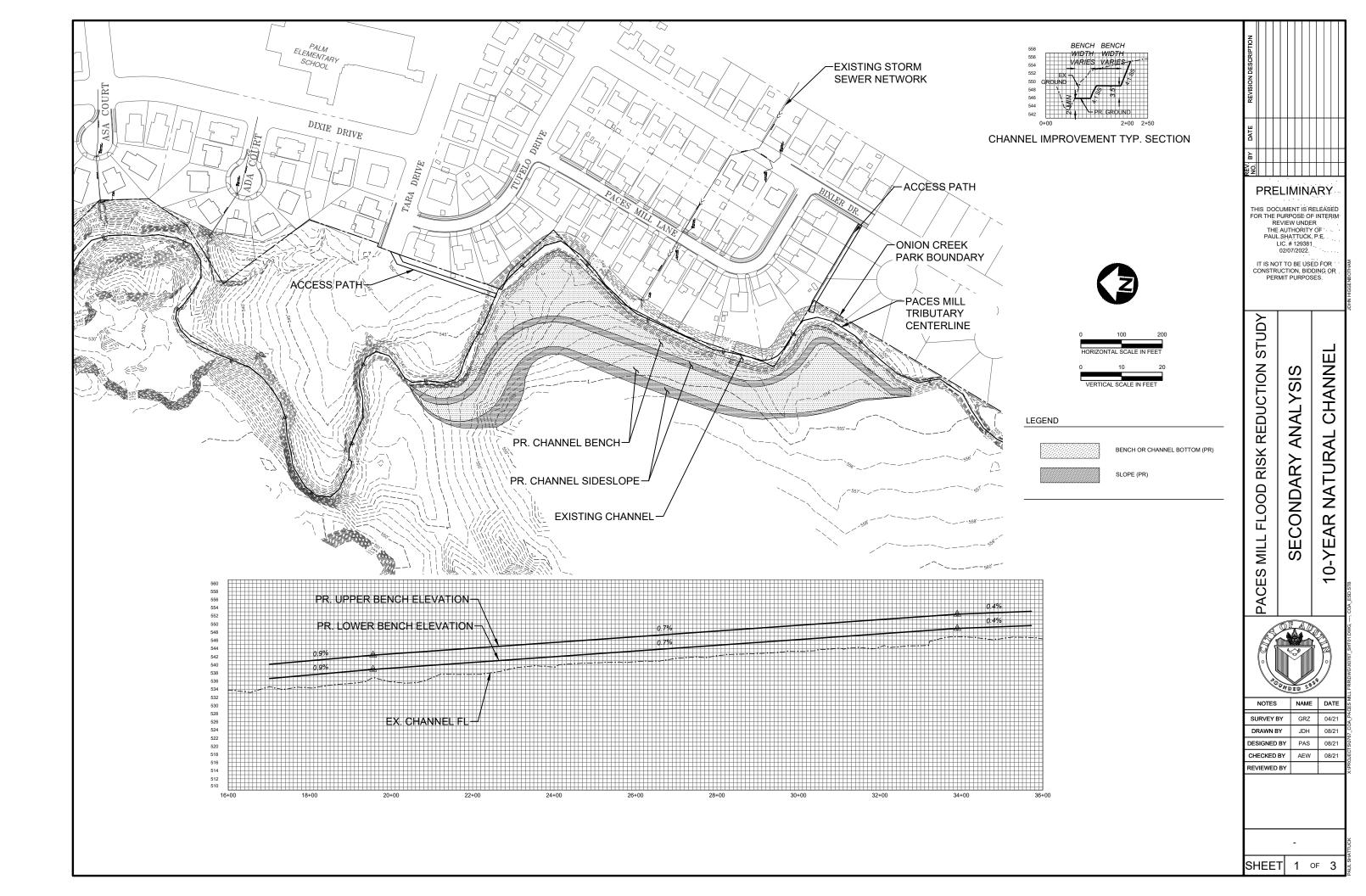
	Alternatives												
												Vegetation	
		Buyouts			Natural Channe	el	Engineere	ed Channel	Floo	dwall	Bypass	Management	Hybrid
				Alt 2A -					Alt 4A -				
Type of benefit	Alt 1A - 10YR	Alt 1B - 25YR	Alt 1C - 100YR	10YR	Alt 2B - 25YR	Alt 2C - 100YR	Alt 3A - 25YR	Alt3B - 100YR	Hybrid	Alt 5A - Only	Alt F1	Alt F2	Alt F3
No. of homes with Interior Flood risk removed	2	8	15	7	15	15	10	15	15	15	10	6	15
Points earned for benefit	1	5	10	5	10	10	7	10	10	10	7	4	10
No. of homes with Safe Access made available	2	8	15	10	18	25	9	16	25	25	13	8	16
Points earned for benefit	0	2	4	2	4	6	2	4	6	6	3	2	4
No. of homes with Yard flood risk removed	2	8	15	9	13	20	12	14	20	20	11	8	14
Points earned for benefit	0	1	2	1	2	2	1	2	2	2	1	1	2
Total points	2	8	15	8	16	18	10	15	18	18	11	7	15

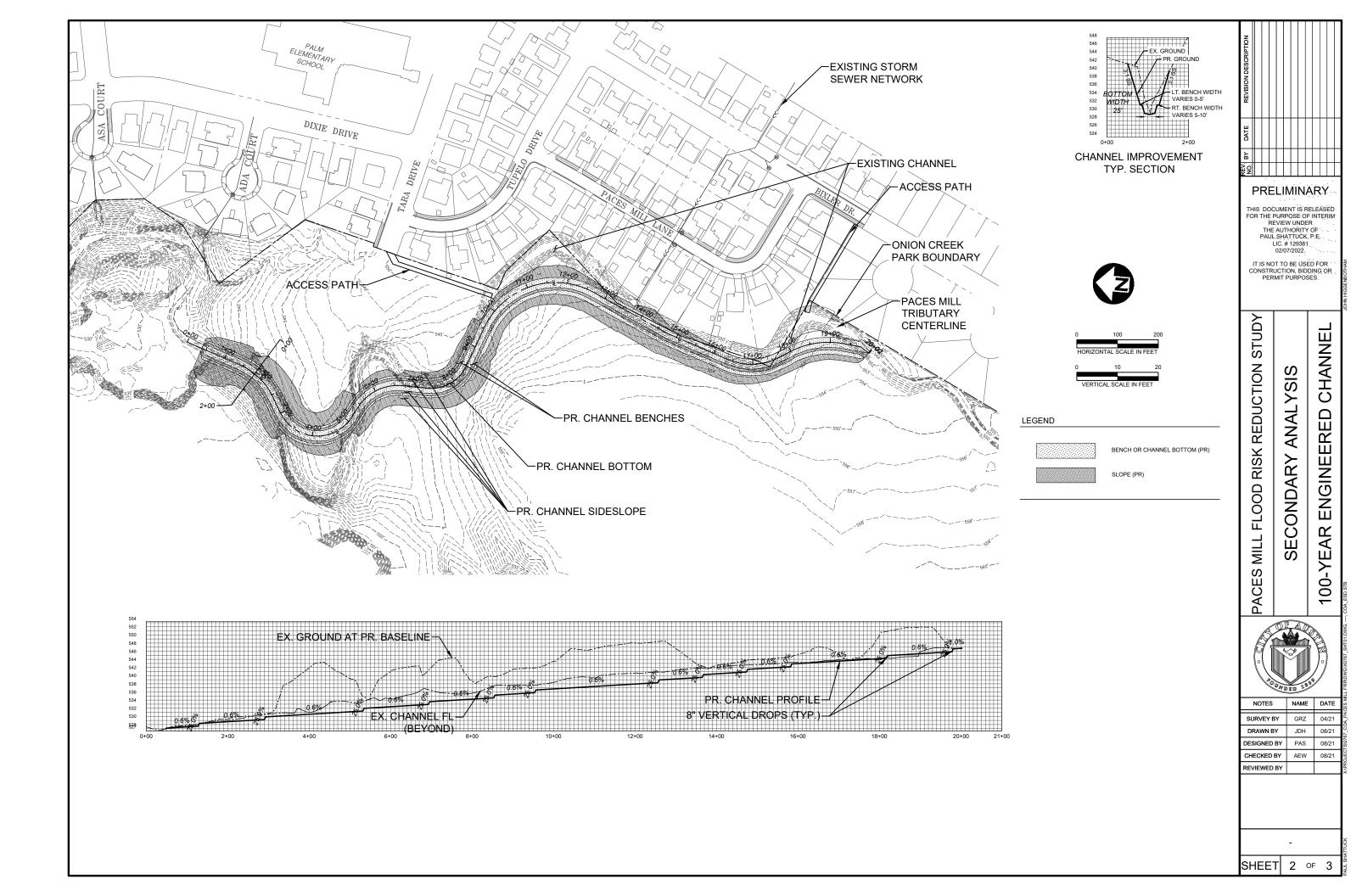
Cost Effectiveness of Flood Risk Reduction for 25-yr Storm (\$/ft- home of Flood Reduction) Criteria	% of Points	Points
Less thank \$700k per foot of structural inundation reduction	100%	15
Greater than or equal to \$700k and less than \$800k per foot of structural inundation reduction	80%	12
Greater than or equal to \$800k and less than \$900k per foot of structural inundation reduction	60%	9
Greater than or equal to \$900k and less than \$1M per foot of structural inundation reduction	40%	6
Greater than or equal to \$1M per foot of structural inundation reduction	20%	3

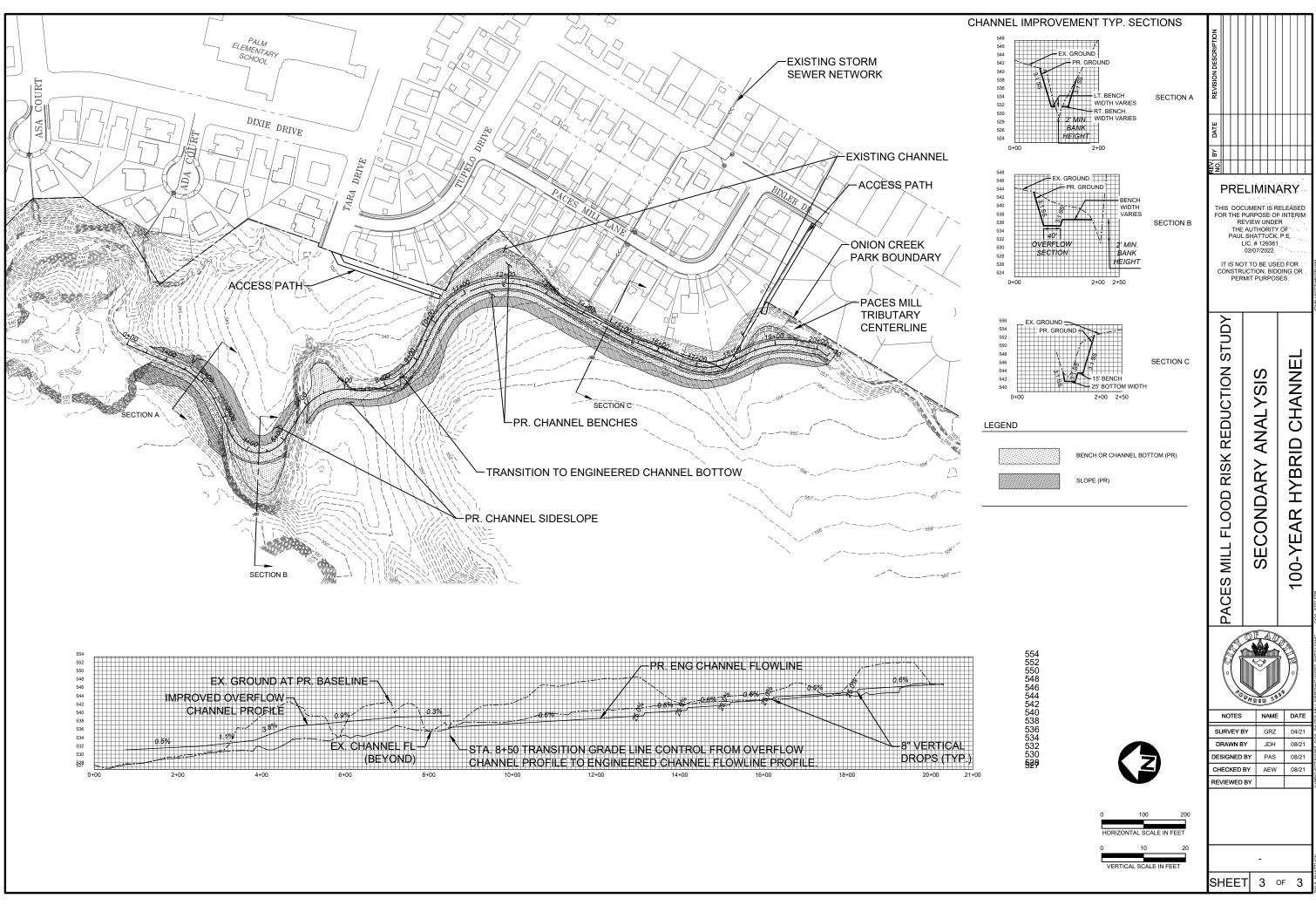
Cost Effectiveness of Flood Risk Reduction for 100-yr Storm (\$/ft - home of Flood Reduction)								
Criteria	% of Points	Points						
Less than \$200k per foot of structural inundation reduction	100%	10						
Greater than or equal to \$200k and less than \$325k per foot of structural inundation reduction	80%	8						
Greater than or equal to \$325k and less than \$450k per foot of structural inundation reduction	60%	6						
Greater than or equal to \$450k and less than \$575k per foot of structural inundation reduction	40%	4						
Greater than or equal to \$575k per foot of structural inundation reduction	20%	2						

			Based on Preliminary Alts					
15 Hom	es in Floodplain		Tech memo	Based on Pre	eliminary Alts	Fech memo	For use in Ci	riteria Matrix
				Homes			Cost Effectiveness of Flood	Cost Effectiveness of Flood
				Removed From			Risk Reduction for 25-yr	Risk Reduction for 100-yr
		Matrix	Estimate Cost	FD 100-YR	25Yr Depth	100-YR Depth	Storm (\$ per ft of Flood	Storm (\$ per ft of Flood
	Alternative	Score	(Millions)	Floodplain	Removed	removed	Reduction)	Reduction)
1A	10-YR Buyouts		\$ 0.97	2	3.43	6.23	\$ 283,673	\$ 156,180
1B	25-YR Buyouts		\$ 4.34	8	8.05	18.91	\$ 538,634	\$ 229,297
1C	100-YR Buyouts		\$ 8.07	15	8.05	23.38	\$ 1,002,981	\$ 345,338
2A	10-YR Natural Channel		\$ 6.23	7	8.05	18.74	\$ 773,913	\$ 332,444
2B	25-YR Natural Channel		\$ 10.61	15	8.05	23.38	\$ 1,318,012	\$ 453,807
2C	100-YR Natural Channel		\$ 17.03	15	8.05	23.38	\$ 2,115,528	\$ 728,400
3A	25-YR Engineered Channel		\$ 4.15	10	8.05	22.15	\$ 515,528	\$ 187,359
3B	100-YR Engineered Channel		\$ 5.46	15	8.05	23.38	\$ 678,261	\$ 233,533
4	25-YR Channel with Floodwall		\$ 17.47	15	8.05	23.38	\$ 2,170,186	\$ 747,220
5	Floodwall		\$ 8.16	15	8.05	23.38	\$ 1,013,665	\$ 349,016
F1	Bypass Culvert		\$ 9.36	10	8.05	20.82	\$ 1,162,733	\$ 449,568
F2	Channel Maintenance		\$ 1.10	6	5.28	10.8	\$ 208,333	\$ 101,852
F3	Hybrid		\$ 5.76	15	8.05	23.38	\$ 715,528	\$ 246,364

Operations and Maintenance Cost		BEFORE
Criteria	% of Points	Points
No Annual Operations or Maintenance (O&M) Cost	100%	5
Less than \$50,000/yr Annual O&M Cost	80%	4
Less than \$100,000/yr Annual O&M Cost	60%	3
Less than \$200,000/yr Annual O&M Cost	40%	2
More than \$200,000/yr Annual O&M Cost	20%	1


Notes: O&M Cost are currently placeholders. Need a range of typical annual O&M costs for channel maintenance Include a value for complexity of maintenance: earthwork, concrete, access, internal or professional services required, risk of failure Appendix H: Primary Analysis Primary Analysis Matrix Results

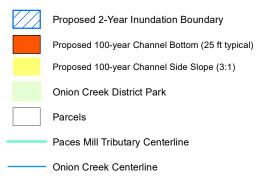


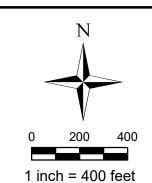

		Alternative 1A - 10YR FP Buyouts	Alternative 1B - 25YR FP Buyouts	Alternative 1C - 100YR FP Buyouts	Alternative 2A - 10YR Natural Channel	Alternative 2B - 25YR Natural Channel	Alternative 2C - 100YR Natural Channel	Alternative 3A - 25YR Engineered Channel	Alternative 3B - 100YR Engineered Channe	Alternative 4A - 25Yr Channel w Floodwall	Alternative 5A - Floodwall Only	Alternative 1F - Bypass Culverts	Alternative 2F - Channel Maintenance	Alternative 3F - Hybrid Channel
Criteria	Max Score													
Project Delivery	30													
Environmental Constraints	10	10	10	10	6	4	3	5	4	2	5	6	5	4
Land and Easement Acquisition	15	15	15	15	8	7	6	9	8	5	10	10	9	8
Potential Major Utility Impacts	0													
Time to Implementation	5	5	5	5	3	2	2	3	3	1	2	2	4	3
Impacts	40		-											
Social/Community Impacts	10	8	5	3	10	10	10	10	10	2	2	6	10	10
Ecological Uplift Benefits	10	3	3	3	6	6	6	4	4	4	3	2	2	4
Flood Risk Reduction (100-yr Storm) Benefits	20	2	8	15	8	16	18	10	15	18	18	11	7	15
Cost	30													
Cost Effectiveness of Flood Risk Reduction for 25-yr Storm (\$/ft- home of Flood Reduction) ⁴	15	15	15	3	12	3	3	15	15	3	3	3	15	15
Cost Effectiveness of Flood Risk Reduction for 100-yr Storm (\$/ft- home of Flood Reduction) ⁴	10	10	8	6	6	4	2	10	8	2	6	4	10	8
Qualitative Score for O&M Cost ⁵	5	5	5	5	3	3	3	3	3	1	1	2	1	3
Notes: Please see rubric tabs for determining the point values.	Score	73	74	65	62	55	53	69	70	38	50	46	63	70

Appendix I: Secondary Analysis Proposed Design Schematics

X:\PROJECTS\0767_COA_PACES MILL

L SHATTUC


Appendix J: Secondary Analysis Inundation and Velocity Change Exhibits

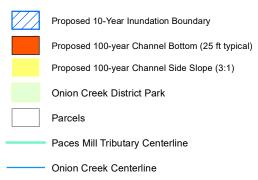

Legend

Streets

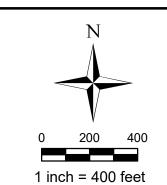
City of Austin Paces Mill Lane **Flood Risk Reduction** Secondary Analysis

100-Year LOS Hybrid Channel Proposed 2-Year Inundation Boundary

Date: 2/9/2022



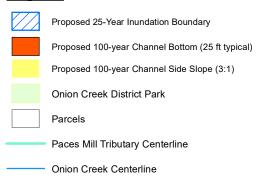
KFRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING



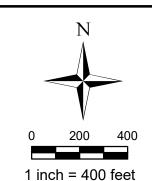
Streets

City of Austin Paces Mill Lane **Flood Risk Reduction** Secondary Analysis

100-Year LOS Hybrid Channel Proposed 10-Year Inundation Boundary



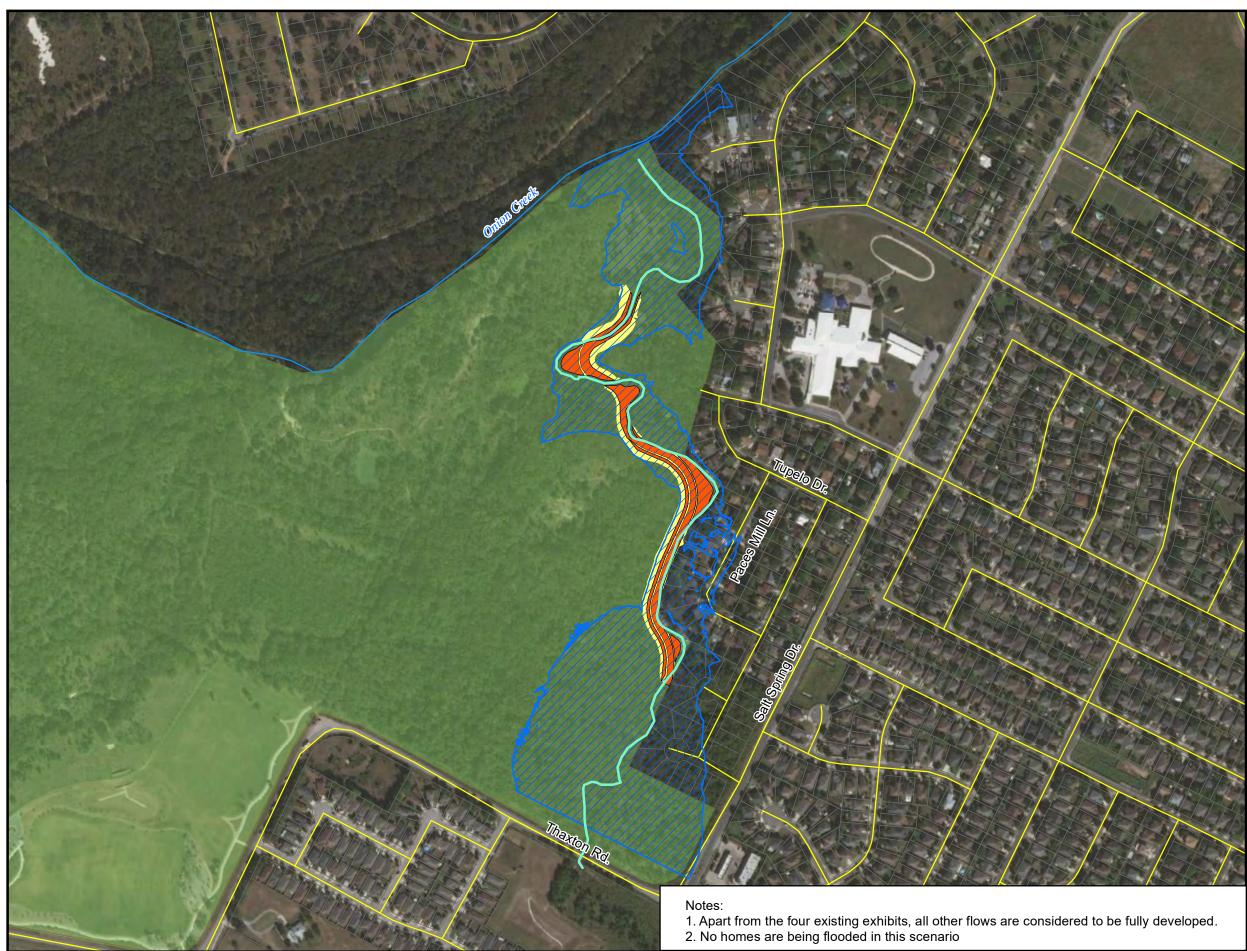
Date: 2/9/2022

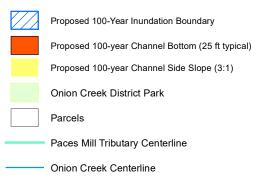


Streets

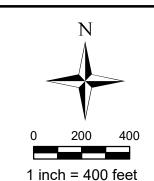
City of Austin Paces Mill Lane **Flood Risk Reduction** Secondary Analysis

100-Year LOS Hybrid Channel Proposed 25-Year Inundation Boundary




Date: 2/9/2022

PUBLIC PROJECT ENGINEERING



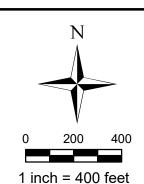
Streets

City of Austin Paces Mill Lane **Flood Risk Reduction** Secondary Analysis

100-Year LOS Hybrid Channel Proposed 100-Year Inundation Boundary

Date: 2/9/2022

Proposed 2-Year Inundation Boundary Proposed 100-year Channel Bottom (25 ft) Proposed 100-year Channel Side Slope (3:1) Onion Creek District Park Parcels


Paces Mill Tributary Centerline

Onion Creek Centerline

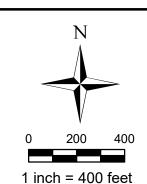
Streets

City of Austin Paces Mill Lane **Flood Risk Reduction** Secondary Analysis

100-Year LOS Engineered Channel Proposed 2-Year Inundation Boundary

Date: 2/9/2022

KFRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING


Proposed 10-Year Inundation Boundary Proposed 100-year Channel Bottom (25 ft) Proposed 100-year Channel Side Slope (3:1) Onion Creek District Park Parcels

- Paces Mill Tributary Centerline
- Onion Creek Centerline

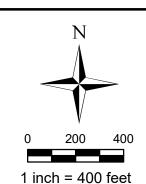
Streets

City of Austin Paces Mill Lane **Flood Risk Reduction** Secondary Analysis

100-Year LOS **Engineered Channel** Proposed 10-Year Inundation Boundary

Date: 2/9/2022

PUBLIC PROJECT ENGINEERING


Proposed 25-Year Inundation Boundary Proposed 100-year Channel Bottom (25 ft) Proposed 100-year Channel Side Slope (3:1) Onion Creek District Park Parcels

- Paces Mill Tributary Centerline
- Onion Creek Centerline

Streets

City of Austin Paces Mill Lane **Flood Risk Reduction** Secondary Analysis

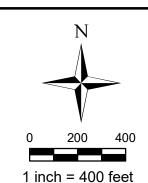
100-Year LOS Engineered Channel Proposed 25-Year Inundation Boundary

Date: 2/9/2022

KFRIESE + ASSOCIATES

PUBLIC PROJECT ENGINEERING

Proposed 100-Year Inundation Boundary Proposed 100-year Channel Bottom (25 ft) Proposed 100-year Channel Side Slope (3:1) Onion Creek District Park Parcels


Paces Mill Tributary Centerline

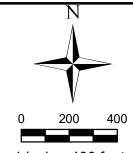
Onion Creek Centerline

Streets

City of Austin Paces Mill Lane **Flood Risk Reduction** Secondary Analysis

100-Year LOS **Engineered Channel** Proposed 100-Year Inundation Boundary

Date: 2/9/2022

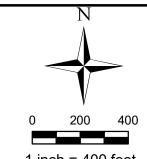

PUBLIC PROJECT ENGINEERING

City of Austin Paces Mill Lane **Flood Risk Reduction** Secondary Analysis

10-Year LOS Natural Channel Proposed 2-Year Inundation Boundary

1 inch = 400 feet

Date: 2/9/2022


KFRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING

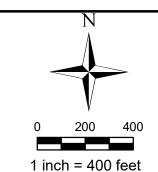
City of Austin Paces Mill Lane **Flood Risk Reduction** Secondary Analysis

10-Year LOS Natural Channel Proposed 10-Year **Inundation Boundary**

1 inch = 400 feet

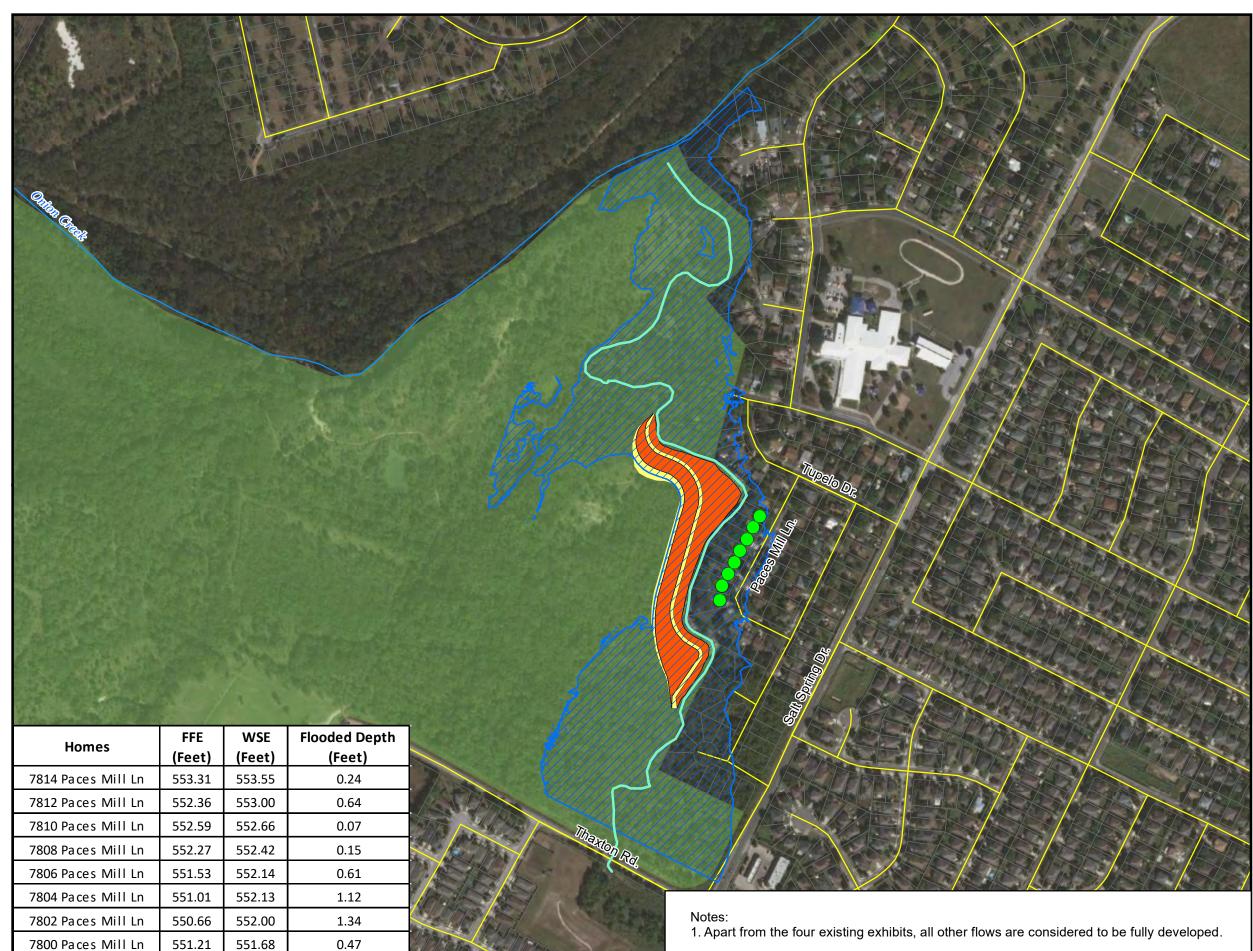
Date: 2/9/2022

KFRIESE + ASSOCIATES


PUBLIC PROJECT ENGINEERING

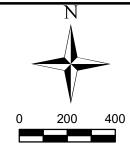
City of Austin Paces Mill Lane **Flood Risk Reduction** Secondary Analysis

10-Year LOS Natural Channel Proposed 25-Year **Inundation Boundary**



Date: 2/9/2022

KFRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING



City of Austin Paces Mill Lane **Flood Risk Reduction Secondary Analysis**

10-Year LOS Natural Channel Proposed 100-Year **Inundation Boundary**

1 inch = 400 feet

Date: 2/9/2022

K FRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING

Appendix K: Secondary Analysis Hydraulic Output

Reach	River Sta	Profile	Q Total	W.S. Elev	E.G. Elev	Vel Chnl	Flow Area	Vel Left	Vel Right	Volume
		1.00	(cfs)	(ft)	(ft)	(ft/s)	(sq ft)	(ft/s)	(ft/s)	(acre-ft)
Reach 1	4361	KFA_50%	770.1	559.59	559.65	1.93	473.99	0.34	0.69	43.09
Reach 1	4361	KFA_10%	1961	561.36	561.44	2.78	1305.53	0.83	0.67	82.91
Reach 1	4361	KFA_4%	2779.1	562.12	562.21	3.07	1796.3	0.91	0.89	143.25
Reach 1	4361	KFA_1%	4058.6	563.03	563.13	3.37	2493.06	1.13	1.05	183.96
Reach 1	4053	KFA_50%	770.1	558.41	558.46	2.37	637	0.44	0.71	39.45
Reach 1	4053	KFA_10%	1961	560	560.04	2.63	1545.99	0.79	1.09	73.94
Reach 1	4053	KFA_4%	2779.1	560.75	560.8	2.72	2083.33	0.93	1.22	131.14
Reach 1	4053	KFA_1%	4058.6	561.67	561.72	2.83	2812.55	1.11	1.37	167.49
Reach 1	3692	KFA_50%	770.1	556.5	556.54	2.17	642.01	0.65	0.78	34.93
Reach 1	3692	KFA_10%	1961	558.24	558.29	2.63	1446.48	1.01	1.12	63.93
Reach 1	3692	KFA_4%	2779.1	559.03	559.08	2.85	1916.41	1.14	1.26	117.94
Reach 1	3692	KFA_1%	4058.6	560.04	560.1	3.05	2605.69	1.3	1.39	149.82
Reach 1	3421	KFA_50%	770.1	553.47	553.77	4.67	233.58	0.86	1.08	32.26
Reach 1	3421	KFA_10%	1961	555.44	555.61	4.55	858.87	1.26	1.95	56.89
Reach 1	3421	KFA_4%	2779.1	556.35	556.48	4.29	1283.69	1.48	2.03	108.16
Reach 1	3421	KFA_1%	4058.6	557.6	557.7	4.08	1941.3	1.61	2.07	135.9
Reach 1	3321	KFA_50%	764.5	550.41	550.89	5.53	138.23			31.8
Reach 1	3321	KFA_10%	1942.3	552.74	553.64	7.62	269.53	0.15	0.69	55.35
Reach 1	3321	KFA_4%	2770.6	553.78	554.89	8.62	560.19	0.46	1.08	105.6
Reach 1	3321	KFA_1%	4094.4	555.11	556.41	9.7	969.69	0.76	1.48	131.86
Reach 1	3208	KFA 50%	764.5	549.82	550.28	5.42	141.12	0.45		31.44
Reach 1	3208	KFA 10%	1942.3	552.29	553.04	7.06	335.13	0.81	1	54.46
Reach 1	3208	KFA_4%	2770.6	553.41	554.3	7.82	558.82	0.85	1.84	104.12
Reach 1	3208	KFA_1%	4094.4	554.79	555.85	8.85	893.84	1,03	2.61	129.43
Reach 1	3003	KFA_50%	764.5	548.97	549.45	5.54	138.02	-		30.78
Reach 1	3003	KFA_10%	1942.3	551.57	552.32	6.98	311.82	0.14	0.54	53.01
Reach 1	3003	KFA_4%	2770.6	552.78	553.64	7.61	477.48	0.31	1.11	101.76
Reach 1	3003	KFA_1%	4094.4	554.16	555.22	8.7	690.05	0.49	1.65	125.6
Reach 1	2761	KFA 50%	764.5	548.52	548.69	3.29	236.95	-	0.52	29.74
Reach 1		KFA 10%	1942.3	551.12	551.49	4.97	491.27	0.22	0.64	50.62
Reach 1		KFA 4%	2770.6	552.39	552.85	5.68	692.79	0.36	1.01	97.72
Reach 1	-	KFA_1%	4094.4	553.76		6.8	965.41	0.5	1.44	119.12
Reach 1	2584	KFA 50%	764.5	548.23	548.4	3.35	231.42	0.05	1.1	28.78
Reach 1		KFA 10%	1942.3			5.07	630.02	0.2	-	48.19
Reach 1		KFA 4%	2770.6			5.85	960.55			93.8
Reach 1	-	KFA_1%	4094.4			7.13	1368,43	0.38		113.2
Reach 1	2421	KFA 50%	764.5	548.07	548.23	3.26	236.76	0.95	0.24	27.91
Reach 1		KFA 10%	1942.3			4.98			0.49	46.43
Reach 1		KFA 4%	2770.6				925.08		0.81	91.35
Reach 1		KFA_1%	4094.4				1330.34			109.84
Reach 1	2329	KFA 50%	764.5	547.72	547.88	3.25	279.11	0.42	0.41	27.41
Reach 1		KFA 10%	1942.3					1.06		45.4
Reach 1		KFA 4%	2770.6				1067.32	1.00		89.88
Reach 1		KFA_1%	4094.4		553.14	5.42	1462.48	1.39	2.26	107.76
Reach 1	2109	KFA 50%	764.5	545.97	546.08	2.92	371.16	0.71	0.9	25.76
Reach 1		KFA_10%	1942.3							41.24
Reach 1		KFA 4%	2770.6				1350.23			83.6
Reach 1		KFA_4%	4094.4					1.14		

Reach	River Sta	Profile	Q Total	ject Condi W.S. Elev	1	Vel Chnl	Flow Area	Vel Left	Vel Right	Volume
			(cfs)	(ft)	(ft)	(ft/s)	(sq ft)	(ft/s)	(ft/s)	(acre-ft)
Reach 1		KFA_50%	764.5	544.86		1.96	522.06	0.54	1.18	24.15
Reach 1	-	KFA_10%	1942.3	547.51	547.58	2.71	1119.91	1.03	1.56	37.96
Reach 1	-	KFA_4%	2770.6	549.05	549.13	3.13	1664.38	1.29	1.1	78.9
Reach 1	1918	KFA_1%	4094.4	550.26	550.35	3.48	2320.26	1.62	1.1	92
Reach 1	1673	KFA 50%	764.5	543.5	543.68	3.62	278.97	0.83	0.7	22.29
Reach 1	1673	KFA 10%	1942.3	546.37	546.51	3.98	989.2	1.23	0.96	34.04
Reach 1		KFA 4%	2770.6	548.06		3.74	1669.24	1.32	0.67	72.93
Reach 1	-	KFA_1%	4094.4	549.26		4.08	2497.24	1.53	0.74	83.21
Reach 1	1672		Lat Struct							
Darah 1	1600	WEA 500/	754.5	542.21	542.40	2.01	220.02		1.01	21.00
Reach 1	-	KFA_50%	764.5	543.31	543.46	3.31	338.03	0.6	1.01	21.85
Reach 1		KFA_10%	1942.3	546.22	546.3	3.01	1203.38	1.23	0.8	31.59
Reach 1 Reach 1		KFA_4% KFA_1%	2770.6	547.95 549.15	548 549.21	2.72	2026.72	1.31	0.59	68.82
100						1 iii			· · · · · · · ·	
Reach 1	-	KFA_50%	764.5	543.16		2.6		0.82	0.82	21.31
Reach 1		KFA_10%	1942.3	546.06	546.13	2.77	1162.71	1.32	1	29.37
Reach 1 Reach 1		KFA 1%	2768.95 4066.9	547.83 549.04	547.89 549.1	2.68	1939.87	1.36	0.72	65.23
Reach 1	1319	KFA_50%	764.5	541.76	541.88	3.2	325.35		1.35	19.45
Reach 1	1319	KFA_10%	1942.3	545.12	545.26	3.82	767.95	Sec. 11	1.83	25.3
Reach 1	1319	KFA_4%	2768.95	547.17	547.29	3.79	1371.33	0,46	1,46	59.3
Reach 1	1319	KFA_1%	4066.9	548.47	548.58	3.83	1977.96	0.67	1.65	65.27
Reach 1	1101	KFA 50%	764.5	537.83	538.2	5.11	183.83	1.67	1.62	18.37
Reach 1	-	KFA 10%	1942.3	540.95	541.59	7.2	377.99	2.64	2.6	23.07
Reach 1	-	KFA 4%	2768.95	544.69	545.08	6.08	828.05	2.36	1.13	55.03
Reach 1	-	KFA_1%	4066.9	545.87	546.4	7.32	1128.68	2.87	1.46	59.11
Reach 1	928	KFA 50%	776	535.2	535.52	5.32	269.71	1.34	1.43	17.52
Reach 1	-	KFA 10%	1949	537.44	538.29	9.01	451.87	2.26	2.13	21.54
Reach 1	928		2802.65	543.57	543.84	5.74	1464.44	1.39	1.04	50.59
Reach 1	928	KFA_1%	4132.3	544.3	544.75	7.67	1649.7	1.84	1.44	53.34
_								-		
Reach 1	-	KFA_50%	776	534.88	534.95	3.32	635.29	0.87	0.87	13.95
Reach 1	-	KFA_10%	1949	536.96		5.7	964.19	1.56	1.41	16.23
Reach 1 Reach 1	-	KFA_4% KFA_1%	2802.65 4132.3	543.5 544.21		4.11	2603.12 2909.54	1.19	0.63	38.94
heading	133	NFA_1/0	4132.3	J44.21	J44,50	5.45	2303,34	1,55	0.07	40.70
Reach 1	-	KFA_50%	776							12.24
Reach 1	-	KFA_10%	1949			4.56		2.24		
Reach 1	-	KFA_4%	2802.65	543.5						
Reach 1	746	KFA_1%	4132.3	544.19	544.27	3.74	2179.22	1.24	1.86	34.81
Reach 1	504	KFA_50%	776	534.05	534.08	1.63	674.59	0.76	0.46	9.43
Reach 1	504	KFA_10%	1949	535	535.16	3.71	758.69	1,73	1.06	10.06
Reach 1	504	KFA_4%	2802.65	543.14	543.22	2.72	1718.92	1.23	0.83	22.44
Reach 1	504	KFA_1%	4132.3	543,52	543.67	3.92	1777.74	1.78	1.16	22.89
Reach 1	379	KFA_50%	776	533.98	534	1.22	961.59	0.56	0.59	7.21
Reach 1	-	KFA_10%	1949			2.84				
Reach 1	379	KFA_4%	2802,65			1.98	2298.99	0.99	-	16.99
Reach 1	379	KFA_1%	4132.3	543.37	543.44	2.87	2352.48	1.42	1.34	17.28
Reach 1	60	KFA 50%	776	533.89	533.91	1.14	1090.16	0.19	0.16	
Reach 1		KFA_10%	1949				1121.75	0.46		
Reach 1	-	KFA_4%	2802.65					0.38		
Reach 1	-	KFA 1%	4132.3							

Reach	River Sta	Profile	Q Total	_	Channel (U E.G. Elev		Flow Area	VelLeft	Vel Right	Volume
neuen	inver sta	rionic	(cfs)	(ft)	(ft)	(ft/s)	(sq ft)	(ft/s)	(ft/s)	(acre-ft)
Reach 1	4178	KFA 50%	770.1	559.18	559.25	2.16	401.06	0.16	0.42	37.
Reach 1		KFA 10%	1961	561.02	561.18	3.51	1107.99	0.58	0.43	64.8
Reach 1		KFA 4%	2779.1	561.82	562.01	4	1593.57	0.69	0.63	117.3
Reach 1		KFA 1%	4058.6	562.77	562.99	4.58	2284.31	0.88	0.79	143.0
Reach 1	3870	KFA 50%	770.1	558.55	558.6	2.17	706.95	0.44	0.68	33.8
Reach 1		KFA 10%	1961	560.17	560.21	2.43	1664.21	0.76	1.03	56.1
Reach 1	-	KFA 4%	2779.1	560.94	560.98	2.53	2227.07	0.89	1.15	105.4
Reach 1	3870	KFA_1%	4058.6	561.85	561.89	2.67	2960.47	1.07	1.3	126.7
		1.000								
Reach 1	3509	KFA 50%	770.1	556.25	556.31	2.44	554.52	0.69	0.84	29.
Reach 1	3509	KFA 10%	1961	558.28	558.33	2.59	1472.68	1	1,1	45.6
Reach 1	3509	KFA 4%	2779.1	559.14	559.19	2.76	1985.78	1.11	1.21	91.5
Reach 1	3509	KFA 1%	4058.6	560.08	560.14	3.02	2634.47	1.28	1.38	108.
Reach 1	3270	KFA_50%	764.5	552.05	552.59	6.35	149.78	2.9	2.45	27.
Reach 1	3270	KFA_10%	1942.3	553.85	554.89	9.44	342.71	3.38	2.47	40.
Reach 1	3270	KFA_4%	2770.6	554.76	555.81	10.15	620.23	1.95	2.5	83.9
Reach 1	3270	KFA_1%	4094.4	555.82	556.75	10.51	1104.36	1.86	2.61	97.
						· · · · · · · · · · · · · · · · · · ·				
Reach 1	3242	KFA_50%	764.5	551,46	551,91	5.61	145.47	3.95	0.34	27.3
Reach 1	3242	KFA_10%	1942.3	553.21	554.07	7.83	282.95	6.02	1.04	40.1
Reach 1	3242	KFA_4%	2770.6	554.16	555.04	8.54	517.07	3.84	0.95	83.5
Reach 1	3242	KFA_1%	4094.4	555,32	556.09	8.76	1027.83	2.5	1.36	96.7
Reach 1	3141	KFA_50%	764.5	550.04	550.18	3.26	260.99	1.68	2.83	26.8
Reach 1	3141	KFA_10%	1942.3	552.06	552.32	4.77	494.38	3.11	3.48	39.3
Reach 1	3141	KFA_4%	2770.6	553.18	553.45	5.27	735.55	3.52	2.98	82.2
Reach 1	3141	KFA 1%	4094.4	554.56	554.82	5.67	1270.53	1.89	2.82	94.6
Reach 1	3076	KFA 50%	764.5	549.39	549.55	3.03	242.13	1.38	3.41	26.4
Reach 1		KFA 10%	1942.3	551.48	551.75	4.32	471.35	2.78	4.28	38.5
Reach 1		KFA 4%	2770.6	552.59	552.92	4.83	609.08	3.41	4.65	81.1
Reach 1		KFA 1%	4094.4	554.07	554.37	5.27	1067.26	1.94	4.11	92.8
					1					1
Reach 1	2922	KFA 50%	764.5	548.13	548.46	4.72	169.4	2.31	0.36	25.7
Reach 1	2922	KFA 10%	1942.3	550.16	550.76	6.42	326.53	4.03	2.3	37.
Reach 1	2922	KFA 4%	2770.6	551.24	551.97	7.22	427.97	4.63	2.15	79.
Reach 1		KFA 1%	4094.4	552.57	553.48	8.19	631.23	5.31	1.76	90.0
Reach 1	2853	KFA 50%	764.5	547.68	548.02	4.84	170.49	2.44		25.4
Reach 1		KFA 10%	1942.3	549.66	550.32	6.82	315.72	3.98	1.75	36.6
Reach 1	2853	KFA 4%	2770.6	550.69	551.53	7.78	418.23	4.62	1.21	78.7
Reach 1		KFA 1%	4094.4	552.01	553.04	8.84	612.13	5.29	1.66	89.0
										30.0
Reach 1	2779	KFA 50%	764.5	546.77	547.33	6.18	131.3	3.42		25.2
Reach 1		KFA_10%	1942.3	548.62				5.67	1.49	36.
Reach 1		KFA 4%	2770.6	549.61	550.79	9.16	329.03	6.41	2.61	78.0
Reach 1		KFA 1%	4094.4	550.89	552.31	10.24	482	7.17	2.21	88.0
	2005		10,74,4	550.05		- STER	-102	(11)	Links	50.0
Reach 1	2520	KFA_50%	764.5	543.88	544.14	4.45	209.27	2.58	2.08	24.2
Reach 1		KFA_10%	1942.3	546.16			419.37	3.72		34.2
Reach 1		KFA 4%	2770.6			6.35	549.7			75.5
Reach 1	-	KFA 1%	4094.4	548.94			731.7	4.79	3.91	84.5
- nederi 1	2320	4/0	40,54,4	540.54	543.54	1.23	131.7	4.75	5.51	04.5
Reach 1	2435	KFA 50%	764.5	543.57	543.68	3.19	347.87	1.91	1.45	23.6
Reach 1		KFA_10%	1942.3	546.01		3.83	719.02	2.52	2.07	33.0
Reach 1		KFA 4%	2770.6	547.34		4.16	937.23	2.52	2.35	73.9
Reach 1	-	KFA 1%	4094.4	548.89		4.10	1206.74	3.16		82.5
neach 1	2435	NFA_170	4054.4	340.69	343.11	4.74	1200.74	5.10	2.11	04.3
Roach 1	2217	KFA 50%	754 5	542.07	543.37	2.16	720.05	1.0	E 50	22.7
Reach 1			764.5	542.97		2.16	239.86	1.3		
Reach 1		KFA_10%	1942.3	545.04			434.56			31.3
Reach 1		KFA_4%	2770.6	546.22		2.99	557.91	1.97	9.87	71.7
Reach 1	2317	KFA_1%	4094.4	547.38	548.78	3.55	695.7	2.31	11.58	79.7
D			-							
Reach 1		KFA_50%	764.5	542.65		3.42	211.66	4.33	0.12	21.7
Reach 1	-	KFA_10%	1942.3	544.85			381.41	6.57	0.37	29.4
Reach 1		KFA_4%	2770.6		546.7	5.65	578.81	7.21	0.69	69.0
Reach 1	2106	KFA_1%	4094.4	547.35	548.14	6.66	823.72	8.41	0.99	76.1

Reach	River Sta	Drofile		rid Channe	E.G. Elev		-	Vallaft	Vol Right	Volume
Keach	River Sta	Profile	Q Total						Vel Right	
Reach 1	1010	KFA 50%	(cfs) 764.5	(ft) 541.78	(ft) 541.95	(ft/s) 3.22	(sq ft) 254.11	(ft/s) 3.35	(ft/s) 0.55	(acre-ft) 20.77
Reach 1	-	KFA 10%	1942.3	541.78	544.29	3.81	562.56	4.46	1.34	27.59
Reach 1		KFA 4%	2770.6	545.49	545.7	3.84	853.81	3.94	1.54	66.42
Reach 1			4094.4	546.76	546.99	4.36	1214.71	3.87	1.54	72.47
Nederi 1	1510	10	40,54.4	540.70	540.55	4.50	1214.11	5.07	1.04	12.41
Reach 1	1807	KFA 50%	764.5	541.63	541.74	2.59	287.36	2.72	0.03	20.33
Reach 1		KFA 10%	1942.3	544	544.15	2.76	626.73	3.31	0.58	26.7
Reach 1			2770.6	545.48	545.6	2.65	1025.32	2.78	0.42	65.14
Reach 1	1807	KFA_1%	4094.4	546.75	546.89	2.96	1439.58	2.91	0.65	70.75
		in the second second								
Reach 1	1673	KFA_50%	764.5	541.05	541.41	5.14	173.82	2.74	2.55	19.85
Reach 1	1673	KFA_10%	1942.3	543.14	543.89	7.77	311.93	4.12	4.07	25.86
Reach 1	1673	KFA_4%	2770.6	544.71	545.4	8	592.94	2.04	4.02	63.93
Reach 1	1673	KFA_1%	4094.4	545.78	546.68	9.43	868.22	2.06	4.73	69.17
							200			
Reach 1		KFA_50%	764.5	540.78	541.12	3.25	182.96	0.43	5.71	19.69
Reach 1		KFA_10%	1942.3	542.67	543.5	4.7	318.13	0.83	8.67	25.58
Reach 1		KFA_4%	2770.6	544.37	545.12	4.48	613.88	0.84	8.33	63.43
Reach 1	1033	KFA_1%	4094.4	545.4	546.35	5.19	877.82	1.26	9.56	68.47
Reach 1	1500	KFA 50%	764.5	539.95	540.39	2.74	179,3		6.39	19.54
Reach 1		KFA 10%	1942.3	541.32	540.39	4.1	281.19	0.63	10.29	25.32
Reach 1	1592	-	2770.6	541.32	544.61	2.76	877.61	0.81	7.01	62.51
Reach 1	1592	-	4094.4	545.06	545.74	3.17	1218.69	1.09	8.18	67.07
									0110	0,107
Reach 1	1319	KFA 50%	764.5	537.32	537.66	4.07	166.62		4.99	18.88
Reach 1		KFA 10%	1942.3	539.29	539.69	3.63	396.71		5.47	24.19
Reach 1	-	KFA 4%	2770.6	543.78	543.93	1.61	979.94		3.26	58.99
Reach 1	1319	KFA 1%	4094.4	544.69	544.94	2.01	1114.83		4.24	62.35
Reach 1	1101	KFA_50%	764.5	535.69	536.07	3.99	159.14	5.34	5.32	18.18
Reach 1	1101	KFA_10%	1942.3	538.14	538.75	4.88	317.35	6.7	6.68	22.7
Reach 1	1101	KFA_4%	2770.6	543.64	543.81	2.6	841.64	3.45	3.52	55.23
Reach 1	1101	KFA_1%	4094.4	544.48	544.76	3.42	971.91	4.41	4.42	58.05
	1		1							
Reach 1		KFA_50%	776	534.97	535.27	4.81	256.22	1.26	0.86	17.4
Reach 1		KFA_10%	1949	537.09	537.91	8.18	424.52	2.13	1.46	21.31
Reach 1		KFA_4%	2804.3	543,45	543.7	5.05	1439.99	1.24	0.86	50.97
Reach 1	928	KFA_1%	4159.8	544.11	544.57	6.94	1603.19	1.69	1.2	53.24
Death 1	700	WEA 500/	776	524.50	524.60	2.02	547.7	0.00	0.05	14.12
Reach 1 Reach 1	-	KFA_50%	776	534.58	534.68 536.75	3.83	547.7 830.56	0.99	0.96	14.12
Reach 1			2804.3	536.46 543.4	543.49	3.97	2365.38	1.15	0.77	16.49 39.83
Reach 1	799	-	4159.8	544.03	544.21	5.53	2552.37	1.61	1.06	41.43
August 1	135	10 10 10	41.55.0	544.03	544.21	5.35	2332.31	1.01	1.00	41.43
Reach 1	739	KFA 50%	776	534.41	534.48	3.09	431.72	1.29	1.63	12.46
Reach 1	-	KFA 10%	1949		536.33	5.7				14.07
Reach 1		KFA 4%	2804.3	543.36		3.56		1.02	1.22	34.13
Reach 1		KFA_1%	4159.8	543.97	544.09	4.92	2209.84	1.42	1.64	35.37
Reach 1	681	KFA_50%	776	534.22	534.26	2.31	542.57	0.49	1.56	11.84
Reach 1	681	KFA_10%	1949	535.64	535.81	4.62	710.33	0.97	3.03	13.21
Reach 1	681	KFA_4%	2804.3	543.3	543.35	3.17	2233.69	0,53	1.36	31.37
	681	KFA_1%	4159.8	543.85	543.94	4.44	2431.84	0.74	1.84	32.38
Reach 1						1				
Reach 1						1 60	C75 00	0.75	0,49	9.44
Reach 1	504	KFA_50%	776		534.1	1.69	675.82			
Reach 1 Reach 1	504 504	KFA_10%	1949	535.07	535.23	3.82	764.93	1.7	1.11	10.12
Reach 1 Reach 1 Reach 1	504 504 504	KFA_10% KFA_4%	1949 2804.3	535.07 543.15	535.23 543.22	3.82 2.82	764.93 1719.7	1.7 1.22	1.11 0.84	10.12 22,46
Reach 1 Reach 1	504 504 504	KFA_10%	1949	535.07	535.23	3.82	764.93	1.7	1.11	10.12
Reach 1 Reach 1 Reach 1 Reach 1	504 504 504 504	KFA_10% KFA_4% KFA_1%	1949 2804.3 4159.8	535.07 543.15 543.54	535.23 543.22 543.7	3.82 2.82 4.11	764.93 1719.7 1780.19	1.7 1.22 1.77	1.11 0.84 1.16	10.12 22,46 22.92
Reach 1 Reach 1 Reach 1 Reach 1 Reach 1	504 504 504 504 504 379	KFA_10% KFA_4% KFA_1% KFA_50%	1949 2804.3 4159.8 776	535.07 543.15 543.54 543.54	535.23 543.22 543.7 534.02	3.82 2.82 4.11 1.22	764.93 1719.7 1780.19 963.71	1.7 1.22 1.77 0.55	1.11 0.84 1.16 0.59	10.12 22.46 22.92 7.22
Reach 1 Reach 1 Reach 1 Reach 1 Reach 1 Reach 1	504 504 504 504 504 379 379	KFA_10% KFA_4% KFA_1% KFA_50% KFA_10%	1949 2804.3 4159.8 776 1949	535.07 543.15 543.54 534.54 534.76	535.23 543.22 543.7 534.02 534.84	3.82 2.82 4.11 1.22 2.81	764.93 1719.7 1780.19 963.71 1058.14	1.7 1.22 1.77 0.55 1.31	1.11 0.84 1.16 0.59 1.34	10.12 22,46 22.92 7.22 7.65
Reach 1 Reach 1 Reach 1 Reach 1 Reach 1 Reach 1 Reach 1	504 504 504 504 379 379 379 379	KFA_10% KFA_4% KFA_1% KFA_50% KFA_10% KFA_4%	1949 2804.3 4159.8 776 1949 2804.3	535.07 543.15 543.54 534.54 534 534.76 543.08	535.23 543.22 543.7 534.02 534.84 543.11	3.82 2.82 4.11 1.22 2.81 1.98	764.93 1719.7 1780.19 963.71 1058.14 2300.69	1.7 1.22 1.77 0.55 1.31 0.99	1.11 0.84 1.16 0.59 1.34 0.93	10.12 22.46 22.92 7.22 7.65 16.99
Reach 1 Reach 1 Reach 1 Reach 1 Reach 1 Reach 1	504 504 504 504 379 379 379 379	KFA_10% KFA_4% KFA_1% KFA_50% KFA_10%	1949 2804.3 4159.8 776 1949	535.07 543.15 543.54 534.54 534.76	535.23 543.22 543.7 534.02 534.84	3.82 2.82 4.11 1.22 2.81	764.93 1719.7 1780.19 963.71 1058.14	1.7 1.22 1.77 0.55 1.31	1.11 0.84 1.16 0.59 1.34	10.12 22.46 22.92 7.22 7.65
Reach 1 Reach 1 Reach 1 Reach 1 Reach 1 Reach 1 Reach 1 Reach 1	504 504 504 504 379 379 379 379 379	KFA_10% KFA_4% KFA_1% KFA_50% KFA_10% KFA_10% KFA_4% KFA_1%	1949 2804.3 4159.8 776 1949 2804.3 4159.8	535.07 543.15 543.54 534 534 534.76 543.08 543.08	535.23 543.22 543.7 534.02 534.84 543.11 543.46	3.82 2.82 4.11 1.22 2.81 1.98 2.88	764.93 1719.7 1780.19 963.71 1058.14 2300.69 2356.67	1.7 1.22 1.77 0.55 1.31 0.99 1.43	1.11 0.84 1.16 0.59 1.34 0.93 1.35	10.12 22.46 22.92 7.22 7.65 16.99
Reach 1 Reach 1 Reach 1 Reach 1 Reach 1 Reach 1 Reach 1 Reach 1 Reach 1 Reach 1	504 504 504 504 379 379 379 379 379 379 60	KFA_10% KFA_4% KFA_1% KFA_50% KFA_10% KFA_10% KFA_1% KFA_50%	1949 2804.3 4159.8 776 1949 2804.3 4159.8 776	535.07 543.15 543.54 534.54 534.76 543.08 543.39 533.89	535.23 543.22 543.7 534.02 534.84 543.11 543.46 533.9	3.82 2.82 4.11 1.22 2.81 1.98 2.88	764.93 1719.7 1780.19 963.71 1058.14 2300.69 2356.67 1090.16	1.7 1.22 1.77 0.55 1.31 0.99 1.43 0.37	1.11 0.84 1.16 0.59 1.34 0.93 1.35 0.32	10.12 22.46 22.92 7.22 7.65 16.99
Reach 1 Reach 1 Reach 1 Reach 1 Reach 1 Reach 1 Reach 1 Reach 1	504 504 504 379 379 379 379 379 379 379 60 60	KFA_10% KFA_4% KFA_1% KFA_50% KFA_10% KFA_10% KFA_4% KFA_1%	1949 2804.3 4159.8 776 1949 2804.3 4159.8	535.07 543.15 543.54 534 534 534.76 543.08 543.08	535.23 543.22 543.7 534.02 534.84 543.11 543.46 533.9 534.26	3.82 2.82 4.11 1.22 2.81 1.98 2.88	764.93 1719.7 1780.19 963.71 1058.14 2300.69 2356.67 1090.16	1.7 1.22 1.77 0.55 1.31 0.99 1.43	1.11 0.84 1.16 0.59 1.34 0.93 1.35 0.32 0.32 0.8	10.12 22.46 22.92 7.22 7.65 16.99

Reach	Diverse	Drofile	OTatal		d Channel		Flow Are	Vallat	Vol Disht	Value
Reach	River Sta	Profile	Q Total		E.G. Elev	Vel Chnl	Flow Area		Vel Right	
			(cfs)	(ft)	(ft)	(ft/s)	(sq ft)	(ft/s)	(ft/s)	(acre-ft)
Reach 1		KFA_50%	770.1	559.76	559.81	1.86	506.03	0.37	0.65	37.0
Reach 1	3783	KFA_10%	1961	561.52	561.59	2.59	1404.1	0.82	0.68	64.3
Reach 1	3783	KFA_4%	2779	562.3	562.37	2.85	1920.21	0.9	0.88	120.8
Reach 1	3783	KFA_1%	4058.6	563.24	563.32	3.12	2666.3	1.08	1.03	144.8
	-									
Reach 1		KFA_50%	770.1	558.62	558.66	2.08	738.53	0.44	0.67	33.0
Reach 1	3475	KFA_10%	1961	560.25	560.29	2.32	1722.86	0.74	1.01	54.
Reach 1	3475	KFA_4%	2779	561.03	561.06	2.42	2293.38	0.88	1.13	107.7
Reach 1	3475	KFA_1%	4058.6	561.97	562.01	2.55	3062	1.03	1.28	127
		-							-	
Reach 1	-	KFA_50%	764.5	556.59	556.64	2.05	678.02	0.63	0.75	28.0
Reach 1		KFA_10%	1942.3	558.45	558.49	2.4	1564.58	0.95	1.04	43.5
Reach 1	3114	KFA_4%	2770.6	559.26	559.3	2.62	2064.82	1.08	1.17	93
Reach 1	3114	KFA_1%	4094.4	560.23	560.28	2.88	2743.35	1.26	1.34	108
Reach 1		KFA_50%	764.5	552.66	553.03	5.53	180.59	1.03	2.85	25.6
Reach 1		KFA_10%	1942.3	554.69	555.04	6.34	585.39	1.45	2.75	37.4
Reach 1		KFA_4%	2770.6	555.66	555.88	5.57	994.67	1.64	2.74	84.6
Reach 1	2874	KFA_1%	4094.4	556.61	556.81	5.45	1465.34	1.99	2.89	96.0
	-						100.0		-	
Reach 1		KFA_50%	764.5	550.46	551.32	7.72	108.41	4.27	2.28	25.5
Reach 1	-	KFA_10%	1942.3	552.1	553.61	10.64	213.36	6.84	4.55	37.1
Reach 1			2770.6	552.99	554.79	11.84	284.74	7.78	4.89	84.2
Reach 1	2847	KFA_1%	4094.4	554.68	556	11.36	700.53	3.83	2.56	95.4
	-	Lung and		-			-		-	
Reach 1		KFA_50%	764.5	549.1	549.4	4.11	177.45	1.46	4.7	25.2
Reach 1		KFA_10%	1942.3	551.04	551.48	5.38	371.57	3.31	5.46	36.5
Reach 1	2746	KFA_4%	2770.6	552.11	552.61	5.9	498.82	3.79	5.65	83
Reach 1	2746	KFA_1%	4094.4	553.64	554.08	6.22	803.96	3.71	4.69	93.9
					-					
Reach 1	2681	KFA_50%	764.5	548.56	548.78	3.92	203.83	1.92	3.76	24.8
Reach 1	2681	KFA_10%	1942.3	550.62	551	5.19	405.71	3.25	4.71	35.8
Reach 1	2681	KFA_4%	2770.6	551.74	552.19	5.73	527.69	3.64	5.2	82.4
Reach 1	2681	KFA_1%	4094.4	553.19	553.73	6.47	728.15	3.37	5.73	92.4
										1
Reach 1	2527	KFA_50%	764.5	547.62	548.01	5.06	156.55	2.31		24.2
Reach 1	2527	KFA_10%	1942.3	549.69	550.35	6.73	308.22	4.11	2.09	34.6
Reach 1	2527	KFA 4%	2770.6	550.76	551.58	7.59	397.32	4.75	2.86	80.9
Reach 1	2527	KFA_1%	4094.4	552.11	553.14	8.63	583.12	5.44	1.72	90.2
	1			1						
Reach 1	2444	KFA_50%	764.5	547.15	547.52	5.04	160.17	2.95		23.9
Reach 1	2444	KFA_10%	1942.3	549.22	549.91	6.94	300.49	4.69	1.66	34.0
Reach 1	2444	KFA 4%	2770.6	550.27	551.15	7.91	391.96	5.37	1.37	80.1
Reach 1	2444	KFA_1%	4094.4	551.71	552.73	8.74	606.12	5.94	1.71	89.0
	1.1	10000			1			-	1	
Reach 1	2384	KFA_50%	764.5	546.42	546.96	6.02	134.06	3.15		23.7
Reach 1	2384	KFA 10%	1942.3	548.33	549.31	8.25	251	5.52	0.97	33.7
Reach 1	2384		2770.6	549.27	550.53	9.44	317.53	6.39	2.31	79
Reach 1		KFA 1%	4094.4	550.53	552.13	10.76	442.69	7.31	2.07	88.3
Reach 1	2125	KFA 50%	764.5	543.52	543.89	5.13	170.6	2.35	2.17	22.8
Reach 1	-	KFA 10%	1942.3	545.45	546.05	6.85	336.25	3.92	4.11	31.9
Reach 1	-	KFA 4%	2770.6		547.31	7.38	447.79	4.39		77.4
Reach 1		KFA 1%	4094.4		548.87	8.57	589.92	5.22		85.2
	- cics	4/12		541.33	540.07	5.57	503.32	5.22	5.10	
Reach 1	2040	KFA 50%	764.5	542.96	543.23	4.48	195.57	2.49	2.49	22
Reach 1	-	KFA 10%	1942.3		545.38	5.97	385.81	3.72	3.9	31.2
Reach 1		KFA 4%	2770.6		546.71	6.14	538.74	3.9		76.4
Reach 1		KFA 1%	4094.4		548.23	6.79	729.7	4.36		83.9
	2000	410		547.00	540.25	5.73		4.00	4.01	001.
Reach 1	1922	KFA_50%	764.5	541.73	542.22	5.75	146.05	3.01	1.93	22.0
Reach 1	-	KFA 10%	1942.3		544.44	6.98	318.76	4.53		30.2
Reach 1	-	KFA 4%				6.73	477.93	4.55		
			2770.6		546.03	7.76				75.0
Reach 1	1922	KFA_1%	4094.4	340.79	347.34	1.70	620.44	5.13	5.08	82.0
Roach 1	1717	KEA 5094	764.5	539.42	520.04	5.51	151 12	2.85	2.69	21.5
Reach 1	-	KFA 50%			539.86	5.51	151.13			21.3
Reach 1		KFA_10%	1942.3		542.43	7.58	291.53	4.45		28,8
Reach 1		KFA_4%	2770.6		544.95	6.47	509.2	3.93		72.
Reach 1	1717	KFA_1%	4094.4	545.61	546.36	7.91	677.53	4.83	3.39	79.0
					-	1.1.1				-
Reach 1	-	KFA_50%	764.5	538.01	538.37	5.01	166.13	2.57		20.7
Reach 1	1544	KFA_10%	1942.3	540.28	540.95	7.03	313.63	4.02	4.19	27
Reach 1	1544	KFA_4%	2770.6	544.05	544.37	5.18	724.66	3.11	2.04	70.5
Reach 1	1544	KFA 1%	4094.4	545.14	545.62	6.52	920.85	3.78	2.25	76.2

Reach	River Sta	Profile	Q Total		E.G. Elev		Flow Area	VelLeft	Vel Right	Volume
neach	Hiver Sta	rionie	(cfs)	(ft)	(ft)	(ft/s)	(sq ft)	(ft/s)	(ft/s)	(acre-ft)
Reach 1	1511	KFA 50%	764.5	537.75	538.12	5.08	171.6	2.59	2	20.5
Reach 1	-	KFA 10%	1942.3	540.1	540.68	6.77	369.34	3.9	2.63	20.5
	-	-								
Reach 1	1511	KFA_4%	2770.6	544.05	544.28	4.66	915.13	2.9	1.62	69.8
Reach 1	1511	KFA_1%	4094.4	545.15	545.49	5.85	1155.94	3	2	75.4
	-								-	
Reach 1	1466		764.5	537.28	537.69	5.36	166.6	2.74	1.89	20.3
Reach 1	-	KFA_10%	1942.3	539.61	540.23	7.02	354.33	4.09	2.82	26.
Reach 1	1466	KFA_4%	2770.6	543.93	544.17	4.6	866.58	2.86	1.85	67.9
Reach 1	1466	KFA_1%	4094.4	544.97	545.32	5.88	1074.77	2.82	2.38	73.1
_			-	-					-	
Reach 1	1435	KFA_50%	764.5	536.9	537.37	5.74	146.58	2.74	3.02	20.2
Reach 1	1435	KFA_10%	1942.3	539.24	539.97	7.36	301.57	4.19	4.69	26.5
Reach 1	1435	KFA_4%	2770.6	543.83	544.11	4.81	686.78	2.96	3.24	67.4
Reach 1	1435	KFA_1%	4094.4	544.78	545.24	6.3	856.84	2.89	4.04	72.5
					1		and the second second		1	
Reach 1	1370	KFA 50%	764.5	536.41	536.75	4.85	171.96	2.44	2.56	20.0
Reach 1	1370	KFA 10%	1942.3	538.83	539.43	6.69	332.21	3.78	3.91	26.1
Reach 1	-	KFA 4%	2770.6	543.78	544	4.31	832.67	2.08	2.61	66.3
Reach 1		KFA 1%	4094.4	544.71	545.07	5.64	1058.1	2.02	3.42	71.1
	1010	and any			515101	5.04	493014	LIVE	3.72	7414
Reach 1	1305	KFA 50%	764.5	536	536.31	4.66	196.78	1.57	2.39	19.7
Reach 1	1305		1942.3	538.53	538.98	4.00	438.25	2.22	3.44	25.4
Reach 1	1305		2770.6	543.76	543.9	3.61	1203.45	1.36	2.16	64.1
Reach 1	1305	KFA_1%	4094.4	544.69	544.91	4.75	1360.26	1.83	2.85	68.3
	-	land and			-				-	
Reach 1	1289	-	764.5	535.85	536.15	4.75	196.6	1.72	2.49	19.5
Reach 1	-	KFA_10%	1942.3	538.35	538.81	6.13	425.75	2.44	3.58	25.0
Reach 1		KFA_4%	2770.6	543.74	543.86	3.56	1343.19	1.15	2.17	62.0
Reach 1	1289	KFA_1%	4094.4	544.65	544.85	4.66	1548.24	1.52	2.84	65.6
	-		-							
Reach 1	1262	KFA 50%	764.5	535.65	535.98	4.84	200.74	1.85	0.63	19.3
Reach 1	1262	KFA 10%	1942.3	538.04	538.62	6.77	415.53	2.56	0.99	24.6
Reach 1		KFA 4%	2770.6	543.66	543.83	4.01	1279.48	1.39	0.61	60.5
Reach 1	1262		4094.4	544.5	544.79	5.38	1429.37	1.88	0.82	63.9
incucii a		N. A_2/4	4024.4	244.5	544.75	5.50	1423.37	1.00	0.02	03.2
Reach 1	1101	KFA 50%	764.5	535.1	535.3	3.71	228.35	2.04	2.01	18.5
Reach 1	-			537.4				3.33		
		KFA_10%	1942.3		537.83	5.72	391.25		3.29	23.0
Reach 1	1101		2770.6	543.57	543.71	3.41	1005.02	2.1	2.09	56.0
Reach 1	1101	KFA_1%	4094.4	544.34	544.59	4.62	1119.51	2.79	2.76	58.
				121.11			-	-		
Reach 1	928		776	534.83	534.93	2.72	328.21	1.57	1.58	17.
Reach 1	928		1949	537	537.26	4.56	504.99	2.71	2.85	21.3
Reach 1	928	_	2804.3	543.52	543.61	2.9	1566.63	1.75	0.94	51.2
Reach 1	928	KFA_1%	4159.8	544.26	544.42	4	1753.87	2.42	1.22	53.5
Reach 1	799	KFA_50%	776	534.64	534.71	3.33	590.59	0.96	0.97	1
Reach 1	799	KFA 10%	1949	536.65	536.85	5.66	899.71	1.72	1.57	16.1
Reach 1	799	KFA_4%	2804.3	543.46	543.53	3.61	2419.42	1.17	0.79	39.
Reach 1	799	-	4159.8	544.15	544.29	5.01	2626.45	1.62	1.08	40.8
									2.50	
Reach 1	720	KFA 50%	776	534.35	534.48	4.43	425.62	1.09	1.39	12.3
2		KFA 10%	1949			8.39		2.14		12.3
Reach 1	-	-		535.88			585.85		2.5	
Reach 1		KFA_4%	2804.3	543.3	543.45	5.19	1990.68	0.88	1.06	33.9
Reach 1	739	KFA_1%	4159.8	543.84	544.14	7.24	2167.93	1.24	1.44	35.0
	-									
Reach 1	-	KFA_50%	776	534.18		2.27	538.12	0.52	1,6	11.7
Reach 1	-	KFA_10%	1949	535.48		4.61	690.97	1.05	3,16	12.9
Reach 1	681	KFA_4%	2804.3	543.28	543.33	3.07	2228.8	0,55	1,39	31.2
Reach 1	681	KFA_1%	4159.8	543.83	543.92	4.3	2425.18	0.78	1.88	32.1
					1	1	-	1.0.0		
Reach 1	504	KFA_50%	776	533.99	534.04	1.95	669.44	0.46	0.28	9.4
Reach 1	504	KFA_10%	1949	534.74	535	4.56	734.7	1.08	0.66	9.9
Reach 1		KFA 4%	2804.3	543.05		3.51	1704.99	0,81	0.54	22.3
Reach 1	-	KFA 1%	4159.8	543.34	543.63	5.14	1748.31	1.18	0.77	22.7
							2. 10.01			
Reach 1	270	KFA 50%	776	533.96	533.99	1.64	958.98	0.33	0.36	7.
	-		776							
Reach 1		KFA_10%	1949	534.58		3.88	1035.68	0.81	0.83	7.5
Reach 1		KFA_4%	2804.3	543.02		2.95	2291.09	0.66	0.62	16.9
Reach 1	379	KFA_1%	4159.8	543.28	543.46	4.31	2336.34	0.96	0.91	17.2
_										
Reach 1	60	KFA_50%	776	533.89	533.9	1.02	1090.16	0.35	0.31	1.1.1.1
Reach 1	60	KFA_10%	1949	534.18	534.26	2.5	1121.75	0.86	0.76	
Reach 1	60	KFA_4%	2804.3	542.89	542.93	2.04	2589.23	0.66	0.43	
Reach 1	60	KFA 1%	4159.8	543	543.1	3	2620.5	0.98	0.63	

Reach	River Sta	Profile	Q Total	Natural		Vel Chnl	Flow Area	Velleft	Vel Right	Volume
Nedul	niver Sta	Prome	(cfs)	(ft)	(ft)	(ft/s)	(sq ft)	(ft/s)	(ft/s)	(acre-ft)
Deach 1	4261	WEA 500/								
Reach 1		KFA_50%	770.1	560.19	560.23	1.67	658.6	0.4	0.16	45.8
Reach 1	-	KFA_10%	1961	561.99	562.04	2.24	1703.4	0.68	0.65	87.2
Reach 1	-	KFA_4%	2779.1	562.79	562.84	2.46	2298.23	0.84	0.75	145.2
Reach 1	4361	KFA_1%	4058.6	563.74	563.8	2.68	3098.68	0.95	0.95	181.2
Reach 1	4053	KFA_50%	770.1	558.87	558.9	1.81	864.5	0.4	0.63	40.9
Reach 1	4053	KFA_10%	1961	560.49	560.51	2.11	1888.11	0.7	0.94	7
Reach 1	4053	KFA 4%	2779.1	561.25	561.28	2.23	2471.53	0.83	1.06	130.3
Reach 1	4053	KFA_1%	4058.6	562.17	562.2	2.4	3232.59	0.99	1.21	161.6
Reach 1	3692	KFA_50%	770.1	556.18	556.26	2.53	532.58	0.69	0.85	36.0
Reach 1	3692	KFA_10%	1961	558.09	558.15	2.81	1365.65	1.05	1.16	65.1
Reach 1	3692	KFA_4%	2779.1	558.88	558.95	3.03	1824.48	1.17	1.31	116.
Reach 1	3692	KFA_1%	4058.6	559.81	559.88	3.24	2438.66	1.39	1.44	143.
Reach 1	3526	KFA 50%	770.1	553.24	553.45	4.49	278.85	2.95	1.22	34.2
Reach 1	-	KFA 10%	1961	555.36	555.6	5.6	736.8	2.61	1.5	60.4
Reach 1	-	KFA 4%	2779.1	556.12	556.35	5.96	1069.26	2.38	1.67	109.6
Reach 1	-	KFA_1%	4058.6	557.1	557.32	6.26	1569.55	2.35	1.83	133.9
Reach 1	3321	KFA 50%	764.5	550.77	551.08	4.56	191.44	1.04		33.2
Reach 1	3321	KFA 10%	1942.3	552.91	553.45	6.29	530.99	0.93	2.36	57.8
Reach 1		KFA 4%	2770.6	553.75	554.31	6.83	781.21	1.34	3.12	10
Reach 1	3321	KFA_1%	4094.4	554.86	555.46	7.46	1123.77	1.76	3.95	128.6
Reach 1	3207	KFA 50%	764.5	550.34	550.57	4.05	247.37	1.04		32.
Reach 1	-	KFA 10%	1942.3	552.56	552.92	5.39	652.21	1.11	0.5	56.8
Reach 1	-	KFA 4%	2770.6	553.45	553.84	5.88	900.92	1.44	0.66	104.4
Reach 1	3207	KFA_1%	4094.4	554.59	555.03	6.56	1228.03	1.82	0.98	126.3
Reach 1	2996	KFA 50%	764.5	549.37	549.61	4.12	226.22	1.36		31.7
Reach 1	-	KFA 10%	1942.3	551.45	551.9	5.84	484.37	1.51	1.46	54.3
Reach 1	-	KFA 4%	2770.6	552.26	552.82	6.69	625.58	1.96	2.29	101.0
Reach 1		KFA_1%	4094.4	553.23	553.98	7.94	797.39	2.55	3.29	121.4
	-						100.00			
Reach 1	+	KFA_50%	764.5	547.59	548.04	5.71	163.75	2		30.9
Reach 1	-	KFA_10%	1942.3	549.6	550.32	7.35	366.43	2.17	0.5	52.5
Reach 1		KFA_4%	2770.6	550.62	551.31	7.55	563.13	2,53	1.08	98.5
Reach 1	2823	KFA_1%	4094.4	551.86	552.49	7.69	904.4	2.81	2.02	117.5
Reach 1	2760	KFA_50%	764.5	546.95	547.21	4.29	214.81	1.31	1.61	30.6
Reach 1	2760	KFA_10%	1942.3	549.18	549.59	5.6	481.03	1.69	2.09	51.9
Reach 1	2760	KFA_4%	2770.6	550.28	550.71	5.96	701.21	2.01	1.17	97.5
Reach 1	2760	KFA_1%	4094.4	551.58	552.02	6.33	1096.63	2.32	1.5	116.0
Reach 1	2584	KFA_50%	764.5	546.3	546.36	2.42	514.8	1.07		29.3
Reach 1		KFA_10%	1942.3						1.28	49.2
Reach 1	2584	KFA 4%	2770.6	549.93	550.05	3.75	1380.8	1.47	0.77	93.8
Reach 1	-	KFA_1%	4094.4		-				0.93	110.5
Reach 1	2421	KFA_50%	764.5	546.14	546.17	1,78	587.68	1.11		28.3
Reach 1		KFA_10%	1942.3	548.59	548.65	2.55		1.42	0.55	47.
Reach 1		KFA 4%	2770.6							91.
Reach 1		KFA_1%	4094.4					1.94		
Reach 1	2329	KFA_50%	764.5	546.01	546.05	1.53	510.34	1.48		27.6
Reach 1	-	KFA 10%	1942.3		-	-			0.48	4
Reach 1		KFA 4%	2770.6				1			89.6
Reach 1	-	KFA_1%	4094.4					2.46	0.78	105.0
Reach 1	2109	KFA_50%	764.5	545.26	545.33	2,43	457.28	1.37	0.36	25.4
Reach 1		KFA_10%	1942.3							41.2
Reach 1	-	KFA 4%	2770.6							
Reach 1	-	KFA_1%	4094.4		-				0.95	96.8

Reach	River Sta	Profile	Q Total	W.S. Elev	E.G. Elev	Vel Chnl	Flow Area	Vel Left	Vel Right	Volume
			(cfs)	(ft)	(ft)	(ft/s)	(sq ft)	(ft/s)	(ft/s)	(acre-ft)
Reach 1	1918	KFA 50%	764.5	544.44	544.5	2.35	428.44	0.58	1.3	23.8
Reach 1	-	KFA 10%	1942.3	547.01	547.11	3.15	1014.25	0.99	1.67	37.4
Reach 1	-	KFA 4%	2770.6	548.44	548.52	3.02	1529.9	1.27	1.59	78.0
Reach 1	-	KFA 1%	4094.4	549.63	549.72	3.46	2008.05	1.63	1.33	90.2
Reacting	1910	NFA_170	4034.4	345.05	343.72	5,40	2008.03	1.05	1./	50.2
Reach 1	1673	KFA_50%	764.5	543.49	543.67	3.58	278.43	0.95	0.8	22,
Reach 1	1673	KFA_10%	1942.3	546.31	546.44	3.79	974.18	1.33	1.1	33.5
Reach 1	1673	KFA_4%	2770.6	547.98	548.08	3.52	1642.94	1.41	0.73	72.3
Reach 1	1673	KFA_1%	4094.4	549.15	549.25	3.84	2435.72	1.62	0.78	82.1
Reach 1	1622	KFA 50%	764.5	543.37	543.51	3.2	367.88	0.58	1.03	21.
Reach 1	-	KFA 10%	1942.3	546.21	545.28	2.87	1214.37	1.26	0.81	30.8
Reach 1		KFA 4%	2770.6	547.91	547.96	2.63	2005.7	1.35	0.59	67.
Reach 1		KFA_1%	4094.4	549.08	549.13	2.86	2893.45	1.57	0.71	76.
Reach 1	1631		Lat Struct				-	-		-
						1				
Reach 1	-	KFA_50%	764.5	543.23	543.35	2.97	352.61	0.54	0.97	21.0
Reach 1		KFA_10%	1942.3	546.07	546.16	3.07	1061.47	1.33	1.14	28.9
Reach 1	-	KFA_4%	2770.6	547.81	547.88	2.89	1822.6	1,39	0.81	64.8
Reach 1	1592	KFA_1%	4094.4	548.99	549.05	3.08	2602.95	1.52	1.03	72.2
Reach 1	1319	KFA 50%	764.5	541.75	541.88	3.2	324.71		1.35	19.1
Reach 1	1319	KFA_10%	1942.3	545.1	545.24	3.84	764.22		1.84	24.9
Reach 1	1319	KFA_4%	2770.6	547.15	547.27	3.81	1364.22	0.46	1.46	58.9
Reach 1	1319	KFA_1%	4094.4	548.42	548.53	3.91	1953.03	0.68	1.68	64.7
Reach 1 Reach 1	-	KFA_50%	764.5	538.08 541.3	538.39 541.81	4.74	196.48 403.84	1.86	1.81	18.0
Reach 1	-	KFA 4%	2770.6	544.78		5.62	847.83	2.58	1.25	54.6
Reach 1	-	KFA_1%	4094.4	545.97	546.4	6.69	1158.13	3.11	1.62	58.5
Reach 1	-	KFA_50%	776	535.17	535.47	5.23	267.59	1.65	1.17	17.2
Reach 1	-	KFA_10%	1949	537.46	538.24	8.72	453.92	2.73	1.84	21.0
Reach 1		KFA_4%	2804.3	543.52	543.75	5.4	1452.71	1.63	1.06	50.2
Reach 1	928	KFA_1%	4159.8	544.24	544.63	7.22	1635.1	2.16	1.48	52.7
Reach 1	799	KFA 50%	776	534.68	534.75	3.37	605.41	0.92	0.93	13.7
Reach 1	799	KFA_10%	1949	536.68	536.89	5.75	917.04	1.65	1.52	15.94
Reach 1	799	KFA_4%	2804.3	543.42	543.5	3.71	2441.15	1.13	0.78	38.6
Reach 1	799	KFA_1%	4159.8	544.08	544.22	5.08	2631.71	1.56	1.09	40.3
Reach 1	745	KFA 50%	776	534.49	534.63	4.31	446.71	1.01	1.27	12.1
Reach 1	-	KFA_10%	1949			7.95		1.92		
Reach 1	-	KFA_4%	2804.3	543.33		4.71	1960.74	0.77		
Reach 1	746	KFA_1%	4159.8	543.89	544.14	6.53	2102.84	1.07	1.6	34.4
Reach 1	504	KFA 50%	776	534.06	534.09	1.64	674.87	0.75	0.46	9.4
Reach 1	-	KFA 10%	1949	535.02		3.73		1.71	1.04	
Reach 1	1	KFA 4%	2804.3	543.13		2.75		1.22		22.4
Reach 1	-	KFA_1%	4159.8	543.5		3.98		1.77		
Reach 1	379	KFA 50%	776	533.99	534.01	1.2	963.03	0.57	0.6	7.2
Reach 1	-	KFA_10%	1949	534.73		2.76		1.34		7.6
Reach 1	-	KFA_4%	2804.3	543.06		1.93		1.01	0.95	16.9
Reach 1	-	KFA_1%	4159.8	543.37	543.44	2.81	2352.7	1.46		17.2
Reach 1	60	KFA 50%	776	533.89	533.9	0.99	1090.16	0.38	0.33	
Reach 1	-	KFA 10%	1949	534.18		2.44		0.58		
Reach 1		KFA_4%	2804.3	542.89						
Reach 1		KFA_1%	4159.8	543				1.04		

Appendix L: Secondary Analysis Hydrologic Output

Existing	Conditions (Ultir	nate) 2Yr	Existing	Conditions (Ultim	nate) 10Yr	Existing	Conditions (Ultim	nate) 25Yr	Existing	Conditions (Ultim	ate) 100Yr
Model Element	Peak Flow (CFS)	Peak Time	Model Element	Peak Flow (CFS)	Peak Time	Model Element	Peak Flow (CFS)	Peak Time	Model Element	Peak Flow (CFS)	Peak Time
LOCR320	495.1	01Jan2001, 12:20	LOCR320	937.2	01Jan2001, 12:20	LOCR320	1195.6	01Jan2001, 12:20	LOCR320	1600.5	01Jan2001, 12:20
VertexPond	131.3	01Jan2001, 13:00	VertexPond	430.6	01Jan2001, 12:44	VertexPond	620.4	01Jan2001, 12:42	VertexPond	1095	01Jan2001, 12:34
LOCR330	525.9	01Jan2001, 12:18	LOCR330	980.4	01Jan2001, 12:16	LOCR330	1244.1	01Jan2001, 12:16	LOCR330	1654.4	01Jan2001, 12:16
JLOCR330	525.9	01Jan2001, 12:18	JLOCR330	980.4	01Jan2001, 12:16	JLOCR330	1244.1	01Jan2001, 12:16	JLOCR330	1654,4	01Jan2001, 12:16
RLOCR340C	490.1	01Jan2001, 12:28	RLOCR340C	922.2	01Jan2001, 12:26	RLOCR340C	1176.2	01Jan2001, 12:26	RLOCR340C	1571.8	01Jan2001, 12:26
LOCR340C	31.1	01Jan2001, 12:14	LOCR340C	67.1	01Jan2001, 12:14	LOCR340C	88.8	01Jan2001, 12:12	LOCR340C	122.9	01Jan2001, 12:12
JLOCR340C	507.1	01Jan2001, 12:26	JLOCR340C	960.7	01Jan2001, 12:26	JLOCR340C	1226.4	01Jan2001, 12:26	JLOCR340C	1640.4	01Jan2001, 12:26
JLOCR320_340C	576.1	01Jan2001, 12:28	JLOCR320_340C	1298.9	01Jan2001, 12:28	JLOCR320_340C	1751.4	01Jan2001, 12:28	JLOCR320_340C	2580.6	01Jan2001, 12:30
LOCR340A	352.9	01Jan2001, 12:10	LOCR340A	668.3	01Jan2001, 12:10	LOCR340A	852.7	01Jan2001, 12:10	LOCR340A	1139.3	01Jan2001, 12:10
PCM 1 200	87.7	01Jan2001, 12:34	PCM_1_200	274.6	01Jan2001, 12:26	PCM_1_200	713.2	01Jan2001, 12:14	PCM_1_200	1163.4	01Jan2001, 12:12
JLOCR340A	87.7	01Jan2001, 12:34	JLOCR340A	274.6	01Jan2001, 12:26	JLOCR340A	713.2	01Jan2001, 12:14	JLOCR340A	1163.4	01Jan2001, 12:12
RLOCR340B	87.6	01Jan2001, 12:36	RLOCR340B	274	01Jan2001, 12:26	RLOCR340B	697.6	01Jan2001, 12:16	RLOCR340B	1124	01Jan2001, 12:12
LOCR340B	268.7	01Jan2001, 12:08	LOCR340B	514.9	01Jan2001, 12:08	LOCR340B	659.9	01Jan2001, 12:08	LOCR340B	886	01Jan2001, 12:08
PCM_1_100	153.1	01Jan2001, 12:24	PCM_1_100	430.5	01Jan2001, 12:22	PCM_1_100	768.5	01Jan2001, 12:22	PCM_1_100	1742.1	01Jan2001, 12:14
JLOCR340B	153.1	01Jan2001, 12:24	JLOCR340B	430.5	01Jan2001, 12:22	JLOCR340B	768.5	01Jan2001, 12:22	JLOCR340B	1742.1	01Jan2001, 12:14
JLOCR340B_340C	727.9	01Jan2001, 12:28	JLOCR340B_340C	1717.9	01Jan2001, 12:28	JLOCR340B_340C	2457.8	01Jan2001, 12:26	JLOCR340B_340C	3486.3	01Jan2001, 12:28
RLOCR350A	688.5	01Jan2001, 12:40	RLOCR350A	1700.7	01Jan2001, 12:34	RLOCR350A	2428	01Jan2001, 12:32	RLOCR350A	3461.2	01Jan2001, 12:32
LOCR350A	211.4	01Jan2001, 12:16	LOCR350A	443.9	01Jan2001, 12:16	LOCR350A	586.4	01Jan2001, 12:16	LOCR350A	812.5	01Jan2001, 12:16
JLOCR350A	776	01Jan2001, 12:40	JLOCR350A	1949	01Jan2001, 12:32	JLOCR350A	2779.1	01Jan2001, 12:30	JLOCR350A	4058.6	01Jan2001, 12:22
RLOCR350B	734.1	01Jan2001, 12:52	RLOCR350B	1842.7	01Jan2001, 12:44	RLOCR350B	2629.8	01Jan2001, 12:42	RLOCR350B	3889.7	01Jan2001, 12:38
LOCR350B	125.2	01Jan2001, 12:12	LOCR350B	280.5	01Jan2001, 12:10	LOCR350B	380	01Jan2001, 12:10	LOCR350B	541.1	01Jan2001, 12:10
JLOCR350B	753.1	01Jan2001, 12:52	JLOCR350B	1898	01Jan2001, 12:44	JLOCR350B	2711.9	01Jan2001, 12:42	JLOCR350B	4024.2	01Jan2001, 12:38
RLOCR350C	719.1	01Jan2001, 13:08	RLOCR350C	1802.3	01Jan2001, 13:00	RLOCR350C	2574.1	01Jan2001, 12:58	RLOCR350C	3877.4	01Jan2001, 12:52
LOCR350C	97.6	01Jan2001, 12:16	LOCR350C	224.6	01Jan2001, 12:16	LOCR350C	306.9	01Jan2001, 12:16	LOCR350C	441.3	01Jan2001, 12:16
JLOCR350C	734.3	01Jan2001, 13:08	JLOCR350C	1846.6	01Jan2001, 13:00	JLOCR350C	2642.3	01Jan2001, 12:56	JLOCR350C	3999.2	01Jan2001, 12:52

Proposed I	Hybrid Channel (U	Iltimate) 2Yr	Proposed H	ybrid Channel (Ul	timate) 10Yr	Proposed H	ybrid Channel (U	timate) 25Yr	Proposed H	ybrid Channel (Ul	timate) 100Yr
Model Element	Peak Flow (CFS)	Peak Time	Model Element	Peak Flow (CFS)	Peak Time	Model Element	Peak Flow (CFS)	Peak Time	Model Element	Peak Flow (CFS)	Peak Time
LOCR320	495.1	01Jan2001, 12:20	LOCR320	937.2	01Jan2001, 12:20	LOCR320	1195.6	01Jan2001, 12:20	LOCR320	1600.5	01Jan2001, 12:20
VertexPond	131.3	01Jan2001, 13:00	VertexPond	430.6	01Jan2001, 12:44	VertexPond	620.4	01Jan2001, 12:42	VertexPond	1095	01Jan2001, 12:34
LOCR330	525.9	01Jan2001, 12:18	LOCR330	980.4	01Jan2001, 12:16	LOCR330	1244.1	01Jan2001, 12:16	LOCR330	1654.4	01Jan2001, 12:16
JLOCR330	525.9	01Jan2001, 12:18	JLOCR330	980.4	01Jan2001, 12:16	JLOCR330	1244.1	01Jan2001, 12:16	JLOCR330	1654.4	01Jan2001, 12:16
RLOCR340C	490.1	01Jan2001, 12:28	RLOCR340C	922.2	01Jan2001, 12:26	RLOCR340C	1176.2	01Jan2001, 12:26	RLOCR340C	1571.8	01Jan2001, 12:26
LOCR340C	31.1	01Jan2001, 12:14	LOCR340C	67.1	01Jan2001, 12:14	LOCR340C	88.8	01Jan2001, 12:12	LOCR340C	122.9	01Jan2001, 12:12
JLOCR340C	507.1	01Jan2001, 12:26	JLOCR340C	960.7	01Jan2001, 12:26	JLOCR340C	1226.4	01Jan2001, 12:26	JLOCR340C	1640.4	01Jan2001, 12:26
JLOCR320_340C	576.1	01Jan2001, 12:28	JLOCR320_340C	1298.9	01Jan2001, 12:28	JLOCR320_340C	1751.4	01Jan2001, 12:28	JLOCR320_340C	2580.6	01Jan2001, 12:30
LOCR340A	352.9	01Jan2001, 12:10	LOCR340A	668.3	01Jan2001, 12:10	LOCR340A	852.7	01Jan2001, 12:10	LOCR340A	1139.3	01Jan2001, 12:10
PCM_1_200	87.7	01Jan2001, 12:34	PCM_1_200	274.6	01Jan2001, 12:26	PCM_1_200	713.2	01Jan2001, 12:14	PCM_1_200	1163.4	01Jan2001, 12:12
JLOCR340A	87.7	01Jan2001, 12:34	JLOCR340A	274.6	01Jan2001, 12:26	JLOCR340A	713.2	01Jan2001, 12:14	JLOCR340A	1163.4	01Jan2001, 12:12
RLOCR340B	87.6	01Jan2001, 12:36	RLOCR340B	274	01Jan2001, 12:26	RLOCR340B	697.6	01Jan2001, 12:16	RLOCR340B	1124	01Jan2001, 12:12
LOCR340B	268.7	01Jan2001, 12:08	LOCR340B	514.9	01Jan2001, 12:08	LOCR340B	659.9	01Jan2001, 12:08	LOCR340B	886	01Jan2001, 12:08
PCM_1_100	153.1	01Jan2001, 12:24	PCM_1_100	430.5	01Jan2001, 12:22	PCM_1_100	768.5	01Jan2001, 12:22	PCM_1_100	1742.1	01Jan2001, 12:14
JLOCR340B	153.1	01Jan2001, 12:24	JLOCR340B	430.5	01Jan2001, 12:22	JLOCR340B	768.5	01Jan2001, 12:22	JLOCR340B	1742.1	01Jan2001, 12:14
JLOCR340B_340C	727.9	01Jan2001, 12:28	JLOCR340B_340C	1717.9	01Jan2001, 12:28	JLOCR340B_340C	2457.8	01Jan2001, 12:26	JLOCR340B_340C	3486.3	01Jan2001, 12:28
RLOCR350A	688.5	01Jan2001, 12:40	RLOCR350A	1700.7	01Jan2001, 12:34	RLOCR350A	2428	01Jan2001, 12:32	RLOCR350A	3461.2	01Jan2001, 12:32
LOCR350A	211.4	01Jan2001, 12:16	LOCR350A	443.9	01Jan2001, 12:16	LOCR350A	586.4	01Jan2001, 12:16	LOCR350A	812.5	01Jan2001, 12:16
JLOCR350A	776	01Jan2001, 12:40	JLOCR350A	1949	01Jan2001, 12:32	JLOCR350A	2779.1	01Jan2001, 12:30	JLOCR350A	4058.6	01Jan2001, 12:22
RLOCR350B	738.6	01Jan2001, 12:52	RLOCR350B	1869	01Jan2001, 12:42	RLOCR350B	2666.4	01Jan2001, 12:40	RLOCR350B	3930	01Jan2001, 12:36
LOCR350B	125.2	01Jan2001, 12:12	LOCR350B	280.5	01Jan2001, 12:10	LOCR350B	380	01Jan2001, 12:10	LOCR350B	541.1	01Jan2001, 12:10
JLOCR350B	757.5	01Jan2001, 12:52	JLOCR350B	1927.9	01Jan2001, 12:42	JLOCR350B	2753.3	01Jan2001, 12:40	JLOCR350B	4072.2	01Jan2001, 12:36
RLOCR350C	742.1	01Jan2001, 13:00	RLOCR350C	1892.1	01Jan2001, 12:50	RLOCR350C	2704.8	01Jan2001, 12:48	RLOCR350C	4021.2	01Jan2001, 12:44
LOCR350C	97.6	01Jan2001, 12:16	LOCR350C	224.6	01Jan2001, 12:16	LOCR350C	306.9	01Jan2001, 12:16	LOCR350C	441.3	01Jan2001, 12:16
JLOCR350C	760	01Jan2001, 13:00	JLOCR350C	1949.9	01Jan2001, 12:50	JLOCR350C	2791.1	01Jan2001, 12:48	JLOCR350C	4165.4	01Jan2001, 12:44

Proposed Eng	gineered Channel	(Ultimate) 2Yr	Proposed Eng	ineered Channel	(Ultimate) 10Yr	Proposed Eng	ineered Channel	(Ultimate) 25Yr	Proposed Engi	neered Channel (Ultimate) 100Yr
Model Element	Peak Flow (CFS)	Peak Time	Model Element	Peak Flow (CFS)	Peak Time	Model Element	Peak Flow (CFS)	Peak Time	Model Element	Peak Flow (CFS)	Peak Time
LOCR320	495.1	01Jan2001, 12:20	LOCR320	937.2	01Jan2001, 12:20	LOCR320	1195.6	01Jan2001, 12:20	LOCR320	1600.5	01Jan2001, 12:20
VertexPond	131.3	01Jan2001, 13:00	VertexPond	430.6	01Jan2001, 12:44	VertexPond	620.4	01Jan2001, 12:42	VertexPond	1095	01Jan2001, 12:34
LOCR330	525.9	01Jan2001, 12:18	LOCR330	980.4	01Jan2001, 12:16	LOCR330	1244.1	01Jan2001, 12:16	LOCR330	1654.4	01Jan2001, 12:16
JLOCR330	525.9	01Jan2001, 12:18	JLOCR330	980.4	01Jan2001, 12:16	JLOCR330	1244.1	01Jan2001, 12:16	JLOCR330	1654.4	01Jan2001, 12:16
RLOCR340C	490.1	01Jan2001, 12:28	RLOCR340C	922.2	01Jan2001, 12:26	RLOCR340C	1176.2	01Jan2001, 12:26	RLOCR340C	1571.8	01Jan2001, 12:26
LOCR340C	31.1	01Jan2001, 12:14	LOCR340C	67.1	01Jan2001, 12:14	LOCR340C	88.8	01Jan2001, 12:12	LOCR340C	122.9	01Jan2001, 12:12
JLOCR340C	507.1	01Jan2001, 12:26	JLOCR340C	960.7	01Jan2001, 12:26	JLOCR340C	1226.4	01Jan2001, 12:26	JLOCR340C	1640.4	01Jan2001, 12:26
JLOCR320_340C	576.1	01Jan2001, 12:28	JLOCR320_340C	1298.9	01Jan2001, 12:28	JLOCR320_340C	1751.4	01Jan2001, 12:28	JLOCR320_340C	2580.6	01Jan2001, 12:30
LOCR340A	352.9	01Jan2001, 12:10	LOCR340A	668.3	01Jan2001, 12:10	LOCR340A	852.7	01Jan2001, 12:10	LOCR340A	1139.3	01Jan2001, 12:10
PCM_1_200	87.7	01Jan2001, 12:34	PCM_1_200	274.6	01Jan2001, 12:26	PCM_1_200	713.2	01Jan2001, 12:14	PCM_1_200	1163.4	01Jan2001, 12:12
JLOCR340A	87.7	01Jan2001, 12:34	JLOCR340A	274.6	01Jan2001, 12:26	JLOCR340A	713.2	01Jan2001, 12:14	JLOCR340A	1163.4	01Jan2001, 12:12
RLOCR340B	87.6	01Jan2001, 12:36	RLOCR340B	274	01Jan2001, 12:26	RLOCR340B	697.6	01Jan2001, 12:16	RLOCR340B	1124	01Jan2001, 12:12
LOCR340B	268.7	01Jan2001, 12:08	LOCR340B	514.9	01Jan2001, 12:08	LOCR340B	659.9	01Jan2001, 12:08	LOCR340B	886	01Jan2001, 12:08
PCM_1_100	153.1	01Jan2001, 12:24	PCM_1_100	430.5	01Jan2001, 12:22	PCM_1_100	768.5	01Jan2001, 12:22	PCM_1_100	1742.1	01Jan2001, 12:14
JLOCR340B	153.1	01Jan2001, 12:24	JLOCR340B	430.5	01Jan2001, 12:22	JLOCR340B	768.5	01Jan2001, 12:22	JLOCR340B	1742.1	01Jan2001, 12:14
JLOCR340B_340C	727.9	01Jan2001, 12:28	JLOCR340B_340C	1717.9	01Jan2001, 12:28	JLOCR340B_340C	2457.8	01Jan2001, 12:26	JLOCR340B_340C	3486.3	01Jan2001, 12:28
RLOCR350A	688.5	01Jan2001, 12:40	RLOCR350A	1700.7	01Jan2001, 12:34	RLOCR350A	2428	01Jan2001, 12:32	RLOCR350A	3461.2	01Jan2001, 12:32
LOCR350A	211.4	01Jan2001, 12:16	LOCR350A	443.9	01Jan2001, 12:16	LOCR350A	586.4	01Jan2001, 12:16	LOCR350A	812.5	01Jan2001, 12:16
JLOCR350A	776	01Jan2001, 12:40	JLOCR350A	1949	01Jan2001, 12:32	JLOCR350A	2779.1	01Jan2001, 12:30	JLOCR350A	4058.6	01Jan2001, 12:22
RLOCR350B	731.1	01Jan2001, 12:52	RLOCR350B	1865.1	01Jan2001, 12:44	RLOCR350B	2662.1	01Jan2001, 12:40	RLOCR350B	3936.4	01Jan2001, 12:36
LOCR350B	125.2	01Jan2001, 12:12	LOCR350B	280.5	01Jan2001, 12:10	LOCR350B	380	01Jan2001, 12:10	LOCR350B	541.1	01Jan2001, 12:10
JLOCR350B	750.1	01Jan2001, 12:52	JLOCR350B	1923.6	01Jan2001, 12:42	JLOCR350B	2749	01Jan2001, 12:40	JLOCR350B	4080.3	01Jan2001, 12:34
RLOCR350C	737.2	01Jan2001, 13:02	RLOCR350C	1894.7	01Jan2001, 12:50	RLOCR350C	2708.3	01Jan2001, 12:48	RLOCR350C	4029.6	01Jan2001, 12:44
LOCR350C	97.6	01Jan2001, 12:16	LOCR350C	224.6	01Jan2001, 12:16	LOCR350C	306.9	01Jan2001, 12:16	LOCR350C	441.3	01Jan2001, 12:16
JLOCR350C	754.3	01Jan2001, 13:02	JLOCR350C	1952.5	01Jan2001, 12:50	JLOCR350C	2794.6	01Jan2001, 12:48	JLOCR350C	4179.3	01Jan2001, 12:42

Proposed	Natural Channel (Ultimate) 2Yr	Proposed N	latural Channel (L	Jltimate) 10Yr	Proposed N	latural Channel (L	Jltimate) 25Yr	Proposed N	atural Channel (U	ltimate) 100Yr
Model Element	Peak Flow (CFS)	Peak Time	Model Element	Peak Flow (CFS)	Peak Time	Model Element	Peak Flow (CFS)	Peak Time	Model Element	Peak Flow (CFS)	Peak Time
LOCR320	495.1	01Jan2001, 12:20	LOCR320	937.2	01Jan2001, 12:20	LOCR320	1195.6	01Jan2001, 12:20	LOCR320	1600.5	01Jan2001, 12:20
VertexPond	131.3	01Jan2001, 13:00	VertexPond	430.6	01Jan2001, 12:44	VertexPond	620.4	01Jan2001, 12:42	VertexPond	1095	01Jan2001, 12:34
LOCR330	525.9	01Jan2001, 12:18	LOCR330	980.4	01Jan2001, 12:16	LOCR330	1244.1	01Jan2001, 12:16	LOCR330	1654.4	01Jan2001, 12:16
JLOCR330	525.9	01Jan2001, 12:18	JLOCR330	980.4	01Jan2001, 12:16	JLOCR330	1244.1	01Jan2001, 12:16	JLOCR330	1654.4	01Jan2001, 12:16
RLOCR340C	490.1	01Jan2001, 12:28	RLOCR340C	922.2	01Jan2001, 12:26	RLOCR340C	1176.2	01Jan2001, 12:26	RLOCR340C	1571.8	01Jan2001, 12:26
LOCR340C	31.1	01Jan2001, 12:14	LOCR340C	67.1	01Jan2001, 12:14	LOCR340C	88.8	01Jan2001, 12:12	LOCR340C	122.9	01Jan2001, 12:12
JLOCR340C	507.1	01Jan2001, 12:26	JLOCR340C	960.7	01Jan2001, 12:26	JLOCR340C	1226.4	01Jan2001, 12:26	JLOCR340C	1640.4	01Jan2001, 12:26
JLOCR320_340C	576.1	01Jan2001, 12:28	JLOCR320_340C	1298.9	01Jan2001, 12:28	JLOCR320_340C	1751.4	01Jan2001, 12:28	JLOCR320_340C	2580.6	01Jan2001, 12:30
LOCR340A	352.9	01Jan2001, 12:10	LOCR340A	668.3	01Jan2001, 12:10	LOCR340A	852.7	01Jan2001, 12:10	LOCR340A	1139.3	01Jan2001, 12:10
PCM_1_200	87.7	01Jan2001, 12:34	PCM_1_200	274.6	01Jan2001, 12:26	PCM_1_200	713.2	01Jan2001, 12:14	PCM_1_200	1163.4	01Jan2001, 12:12
JLOCR340A	87.7	01Jan2001, 12:34	JLOCR340A	274.6	01Jan2001, 12:26	JLOCR340A	713.2	01Jan2001, 12:14	JLOCR340A	1163.4	01Jan2001, 12:12
RLOCR340B	87.6	01Jan2001, 12:36	RLOCR340B	274	01Jan2001, 12:26	RLOCR340B	697.6	01Jan2001, 12:16	RLOCR340B	1124	01Jan2001, 12:12
LOCR340B	268.7	01Jan2001, 12:08	LOCR340B	514.9	01Jan2001, 12:08	LOCR340B	659.9	01Jan2001, 12:08	LOCR340B	886	01Jan2001, 12:08
PCM_1_100	153.1	01Jan2001, 12:24	PCM_1_100	430.5	01Jan2001, 12:22	PCM_1_100	768.5	01Jan2001, 12:22	PCM_1_100	1742.1	01Jan2001, 12:14
JLOCR340B	153.1	01Jan2001, 12:24	JLOCR340B	430.5	01Jan2001, 12:22	JLOCR340B	768.5	01Jan2001, 12:22	JLOCR340B	1742.1	01Jan2001, 12:14
JLOCR340B_3400	727.9	01Jan2001, 12:28	JLOCR340B_340C	1717.9	01Jan2001, 12:28	JLOCR340B_340C	2457.8	01Jan2001, 12:26	JLOCR340B_340C	3486.3	01Jan2001, 12:28
RLOCR350A	688.5	01Jan2001, 12:40	RLOCR350A	1700.7	01Jan2001, 12:34	RLOCR350A	2428	01Jan2001, 12:32	RLOCR350A	3461.2	01Jan2001, 12:32
LOCR350A	211.4	01Jan2001, 12:16	LOCR350A	443.9	01Jan2001, 12:16	LOCR350A	586.4	01Jan2001, 12:16	LOCR350A	812.5	01Jan2001, 12:16
JLOCR350A	776	01Jan2001, 12:40	JLOCR350A	1949	01Jan2001, 12:32	JLOCR350A	2779.1	01Jan2001, 12:30	JLOCR350A	4058.6	01Jan2001, 12:22
RLOCR350B	726.1	01Jan2001, 12:54	RLOCR350B	1842.6	01Jan2001, 12:44	RLOCR350B	2631	01Jan2001, 12:42	RLOCR350B	3906.6	01Jan2001, 12:38
LOCR350B	125.2	01Jan2001, 12:12	LOCR350B	280.5	01Jan2001, 12:10	LOCR350B	380	01Jan2001, 12:10	LOCR350B	541.1	01Jan2001, 12:10
JLOCR350B	744.3	01Jan2001, 12:54	JLOCR350B	1898	01Jan2001, 12:44	JLOCR350B	2713.1	01Jan2001, 12:42	JLOCR350B	4047.3	01Jan2001, 12:36
RLOCR350C	704.3	01Jan2001, 13:12	RLOCR350C	1799.8	01Jan2001, 13:00	RLOCR350C	2574.9	01Jan2001, 12:58	RLOCR350C	3915.5	01Jan2001, 12:50
LOCR350C	97.6	01Jan2001, 12:16	LOCR350C	224.6	01Jan2001, 12:16	LOCR350C	306.9	01Jan2001, 12:16	LOCR350C	441.3	01Jan2001, 12:16
JLOCR350C	718.3	01Jan2001, 13:12	JLOCR350C	1844.1	01Jan2001, 13:00	JLOCR350C	2644.3	01Jan2001, 12:56	JLOCR350C	4041.9	01Jan2001, 12:50

Appendix M: Secondary Analysis Engineer's Opinion of Costs

CITY OF AUSTIN PACES MILL FRR ENGINEER'S OPINION OF PROBABLE COST 100 YEAR ENGINEERED CHANNEL

BID ITEM NO.	ITEM DESCRIPTION	UNIT	NIT QTY. UNIT COST		UNIT COST		TOTAL COST		
102S-C	CLEARING AND GRUBBING	LS			10%	\$	248,380.00		
111S-A	EXCAVATION	CY	27100	\$	50.00	\$	1,355,000.00		
414S-C	CAST-IN-PLACE PORTLAND CEMENT CONCRETE RETAINING WALL, INCLUDING REINFORCEMENT	СҮ	0	\$	1,500.00	\$	-		
509S-1	TRENCH EXCAVATION SAFETY PROTECTIVE SYSTEMS, (ALL DEPTHS)	LF	0	\$	10.00	\$	-		
559S-10X8	PRECAST CONCRETE BOX CULVERTS, 10 FT X 12 FT	LF	0	\$	2,000.00	\$	-		
591S-A	DRY ROCK RIPRAP, D50 = 18 IN	SY	0	\$	130.00	\$	-		
591S-F	CONCRETE RIPRAP, 6 IN	SY	1200	\$	300.00	\$	360,000.00		
604S-E	NATIVE SEEDING FOR EROSION CONTROL, BROADCAST SEEDING	SY	18000	\$	1.50	\$	27,000.00		
605S	SOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE	SY	18000	\$	10.00	\$	180,000.00		
608S-1	PLANTING TYPE _, SIZE IN INCHES _	EA	0			\$	-		
608S-2	IRRIGATION SYSTEM	LS	1	\$	15,000.00	\$	15,000.00		
609S-A	TOPSOIL AND SEEDBED PREPARATION	SY	18000	\$	15.00	\$	270,000.00		
609S-C	NATIVE SEEDING	SY	18000	\$	5.00	\$	90,000.00		
610S-A	PROTECTIVE FENCING TYPE A CHAIN LINK FENCE	LF	4200	\$	4.00	\$	16,800.00		
639S	ROCK BERM	LF	200	\$	45.00	\$	9,000.00		
641S	STABILIZED CONSTRUCTION ENTRANCE	EA	2	\$	3,500.00	\$	7,000.00		
642S	SILT FENCE FOR EROSION CONTROL	LF	4200	\$	10.00	\$	42,000.00		
700S-TM	TOTAL MOBILIZATION PAYMENT	LS	1		5%	\$	196,609.00		
802S-A	PROJECT SIGN	EA	2	\$	1,000.00	\$	2,000.00		
803S-MO	BARRICADES, SIGNS, AND TRAFFIC HANDLING	MO	12	\$	5,000.00	\$	60,000.00		
SS1000	COFFER DAM & SITE DEWATERING	LS	1	\$	50,000.00	\$	50,000.00		
SP610S	TREE REMOVAL	AC	4	\$	200,000.00	\$	800,000.00		
	TREE MITIGATION	AC	4	\$	100,000.00	\$	400,000.00		
CONSTRUCTION SUBTOTAL						\$	4,128,789.00		
CONTINGENCY (30% OF SUBTOTAL)						\$	1,238,637.00		
CONSTRUCTION COST ESTIMATE						\$	5,367,426.00		
ENGINEERING (15% OF CONSTRUCTION)						\$	805,113.90		
TOTAL COST	TOTAL COST OF ALTERNATIVE					\$	6,172,539.90		

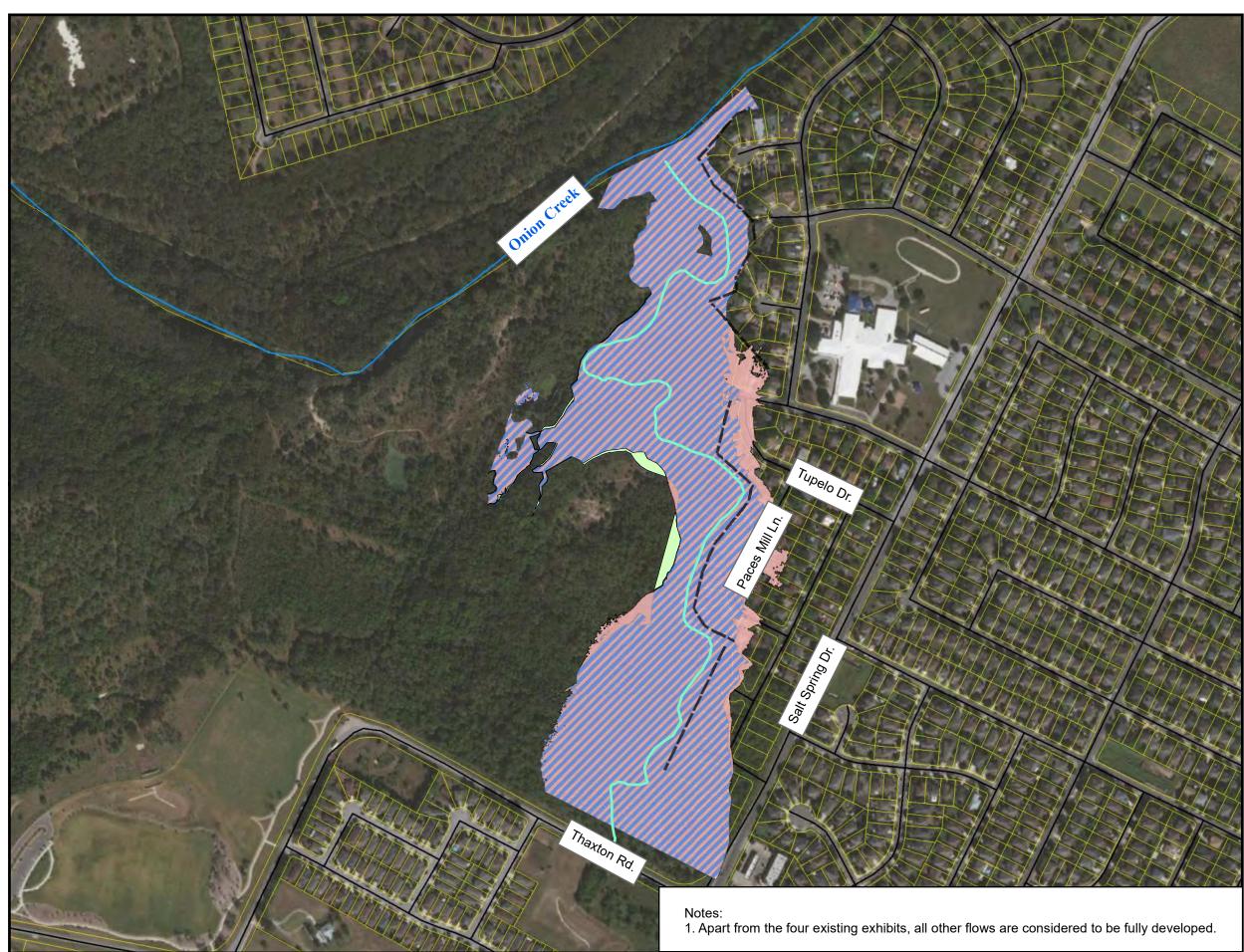
This document is released for interim review under the authority of Paul Shattuck, P.E., #129381 on February 10, 2022 and is not to be used for other purposes.

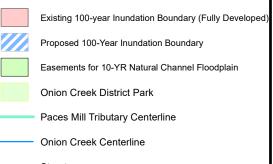
CITY OF AUSTIN PACES MILL FRR ENGINEER'S OPINION OF PROBABLE COST 100 YEAR HYBRID CHANNEL

BID ITEM NO.	ITEM DESCRIPTION	UNIT	QTY.	UNIT COST		Τ	OTAL COST
102S-C	CLEARING AND GRUBBING	LS			10%	\$	227,100.00
111S-A	EXCAVATION	CY	20400	\$	50.00	\$	1,020,000.00
414S-C	CAST-IN-PLACE PORTLAND CEMENT CONCRETE RETAINING WALL, INCLUDING REINFORCEMENT	СҮ	0	\$	1,500.00	\$	-
509S-1	TRENCH EXCAVATION SAFETY PROTECTIVE SYSTEMS, (ALL DEPTHS)	LF	0	\$	10.00	\$	-
559S-10X8	PRECAST CONCRETE BOX CULVERTS, 10 FT X 12 FT	LF	0	\$	2,000.00	\$	-
591S-A	DRY ROCK RIPRAP, D50 = 18 IN	SY	4000	\$	130.00	\$	520,000.00
591S-F	CONCRETE RIPRAP, 6 IN	SY	0	\$	300.00	\$	-
604S-E	NATIVE SEEDING FOR EROSION CONTROL, BROADCAST SEEDING	SY	16800	\$	1.50	\$	25,200.00
605S	SOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE	SY	16800	\$	10.00	\$	168,000.00
608S-1	PLANTING TYPE , SIZE IN INCHES	EA	0			\$	-
608S-2	IRRIGATION SYSTEM	LS	1	\$	15,000.00	\$	15,000.00
609S-A	TOPSOIL AND SEEDBED PREPARATION	SY	16800	\$	15.00	\$	252,000.00
609S-C	NATIVE SEEDING	SY	16800	\$	5.00	\$	84,000.00
610S-A	PROTECTIVE FENCING TYPE A CHAIN LINK FENCE	LF	4200	\$	4.00	\$	16,800.00
639S	ROCK BERM	LF	200	\$	45.00	\$	9,000.00
641S	STABILIZED CONSTRUCTION ENTRANCE	EA	2	\$	3,500.00	\$	7,000.00
642S	SILT FENCE FOR EROSION CONTROL	LF	4200	\$	10.00	\$	42,000.00
700S-TM	TOTAL MOBILIZATION PAYMENT	LS	1		5%	\$	184,905.00
802S-A	PROJECT SIGN	EA	2	\$	1,000.00	\$	2,000.00
803S-MO	BARRICADES, SIGNS, AND TRAFFIC HANDLING	MO	12	\$	5,000.00	\$	60,000.00
SS1000	COFFER DAM & SITE DEWATERING	LS	1	\$	50,000.00	\$	50,000.00
SP610S	TREE REMOVAL	AC	4	\$	200,000.00	\$	800,000.00
	TREE MITIGATION	AC	4	\$	100,000.00	\$	400,000.00
CONSTRUCTION SUBTOTAL						\$	3,883,005.00
CONTINGENCY (30% OF SUBTOTAL)						\$	1,164,902.00
CONSTRUCTI	CONSTRUCTION COST ESTIMATE					\$	5,047,907.00
ENGINEERING (15% OF CONSTRUCTION)						\$	757,186.05
TOTAL COST	OF ALTERNATIVE					\$	5,805,093.05

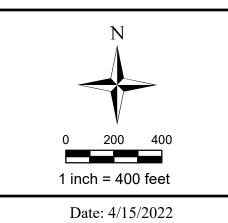
This document is released for interim review under the authority of Paul Shattuck, P.E., #129381 on February 10, 2022 and is not to be used for other purposes.

CITY OF AUSTIN PACES MILL FRR ENGINEER'S OPINION OF PROBABLE COST 10 YEAR NATURAL CHANNEL


BID ITEM NO.	ITEM DESCRIPTION	UNIT	QTY.	U	NIT COST	T	OTAL COST
102S-C	CLEARING AND GRUBBING	LS			10%	\$	240,250.00
111S-A	EXCAVATION	CY	27000	\$	50.00	\$	1,350,000.00
414S-C	CAST-IN-PLACE PORTLAND CEMENT CONCRETE RETAINING WALL, INCLUDING REINFORCEMENT	СҮ	0	\$	1,500.00	\$	-
509S-1	TRENCH EXCAVATION SAFETY PROTECTIVE SYSTEMS, (ALL DEPTHS)	LF	0	\$	10.00	\$	-
559S-10X8	PRECAST CONCRETE BOX CULVERTS, 10 FT X 12 FT	LF	0	\$	2,000.00	\$	-
591S-A	DRY ROCK RIPRAP, D50 = 18 IN	SY	1100	\$	130.00	\$	143,000.00
591S-F	CONCRETE RIPRAP, 6 IN	SY	0	\$	300.00	\$	-
604S-E	NATIVE SEEDING FOR EROSION CONTROL, BROADCAST SEEDING	SY	23000	\$	1.50	\$	34,500.00
605S	SOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE	SY	23000	\$	10.00	\$	230,000.00
608S-1	PLANTING TYPE _, SIZE IN INCHES _	EA	0			\$	-
608S-2	IRRIGATION SYSTEM	LS	1	\$	15,000.00	\$	15,000.00
609S-A	TOPSOIL AND SEEDBED PREPARATION	SY	23000	\$	15.00	\$	345,000.00
609S-C	NATIVE SEEDING	SY	23000	\$	5.00	\$	115,000.00
610S-A	PROTECTIVE FENCING TYPE A CHAIN LINK FENCE	LF	3000	\$	4.00	\$	12,000.00
639S	ROCK BERM	LF	200	\$	45.00	\$	9,000.00
641S	STABILIZED CONSTRUCTION ENTRANCE	EA	2	\$	3,500.00	\$	7,000.00
642S	SILT FENCE FOR EROSION CONTROL	LF	3000	\$	10.00	\$	30,000.00
700S-TM	TOTAL MOBILIZATION PAYMENT	LS	1		5%	\$	207,137.50
802S-A	PROJECT SIGN	EA	2	\$	1,000.00	\$	2,000.00
803S-MO	BARRICADES, SIGNS, AND TRAFFIC HANDLING	MO	12	\$	5,000.00	\$	60,000.00
SS1000	COFFER DAM & SITE DEWATERING	LS	1	\$	50,000.00	\$	50,000.00
SP610S	TREE REMOVAL	AC	5	\$	200,000.00	\$	1,000,000.00
	TREE MITIGATION	AC	5	\$	100,000.00	\$	500,000.00
CONSTRUCTION	SUBTOTAL					\$	4,349,887.50
	CONTINGENCY (30% OF SUBTOTAL)					\$	1,304,967.00
CONSTRUCTION	CONSTRUCTION COST ESTIMATE					\$	5,654,854.50
	ENGINEERING (15% OF CONSTRUCTION)					\$	848,228.18
TOTAL COST OF	ALTERNATIVE					\$	6,503,082.68


This document is released for interim review under the authority of Paul Shattuck, P.E., #129381 on February 10, 2022 and is not to be used for other purposes.

Appendix N: Secondary Analysis Mitigation Easement Exhibits

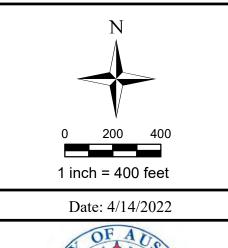

Streets

---- Existing Easement

City of Austin Paces Mill Lane **Flood Risk Reduction** Secondary Analysis

10-Year LOS Natural Channel Alternative

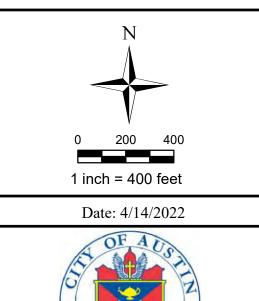
Proposed Easement for Containment of Expected Increase in100-Year Inundation Boundary



City of Austin Paces Mill Lane **Flood Risk Reduction** Secondary Analysis

100-Year LOS Engineered Channel Alternative

Proposed Easement for Containment of Expected Increase in100-Year Inundation Boundary



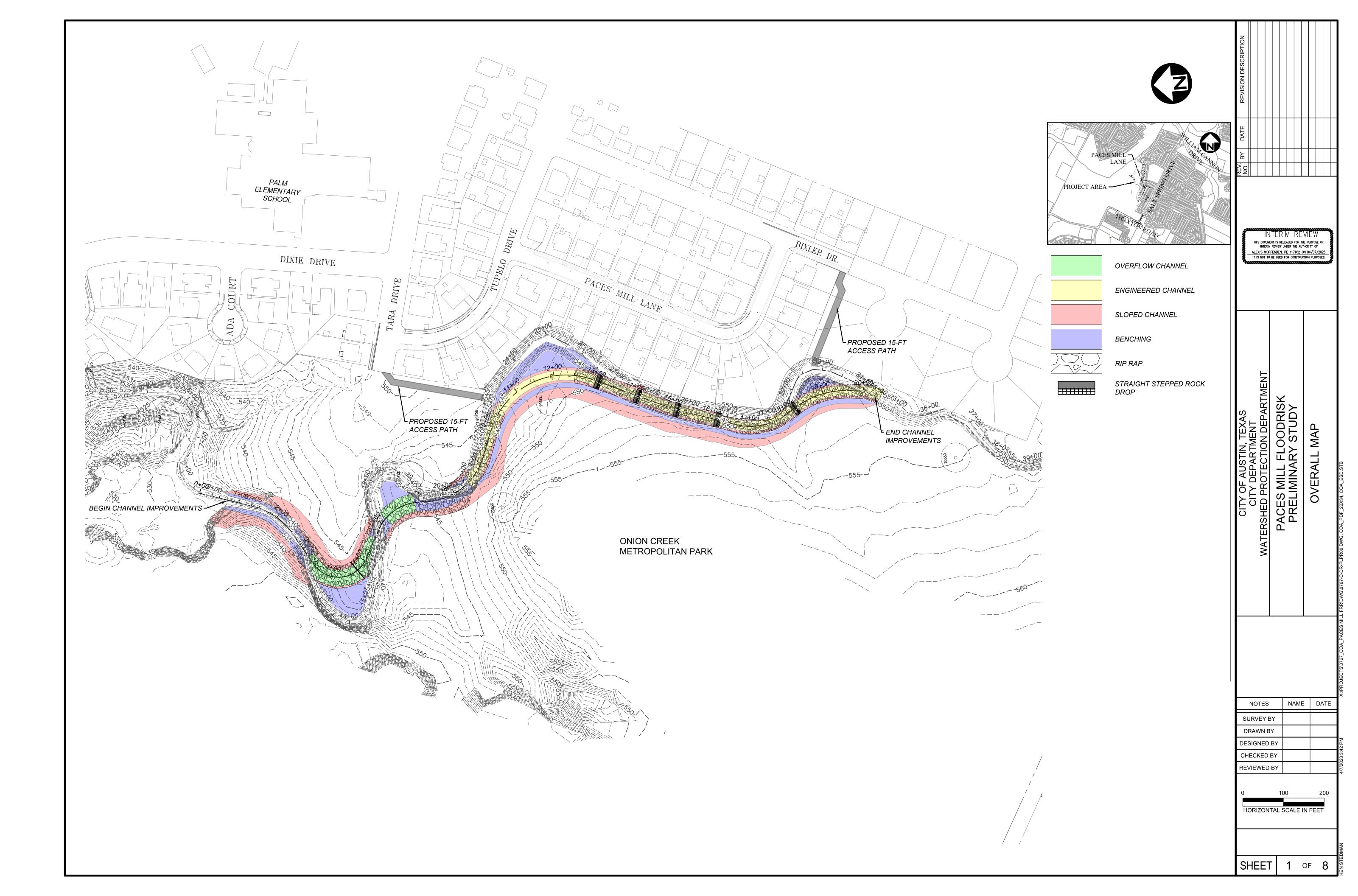
City of Austin Paces Mill Lane **Flood Risk Reduction** Secondary Analysis

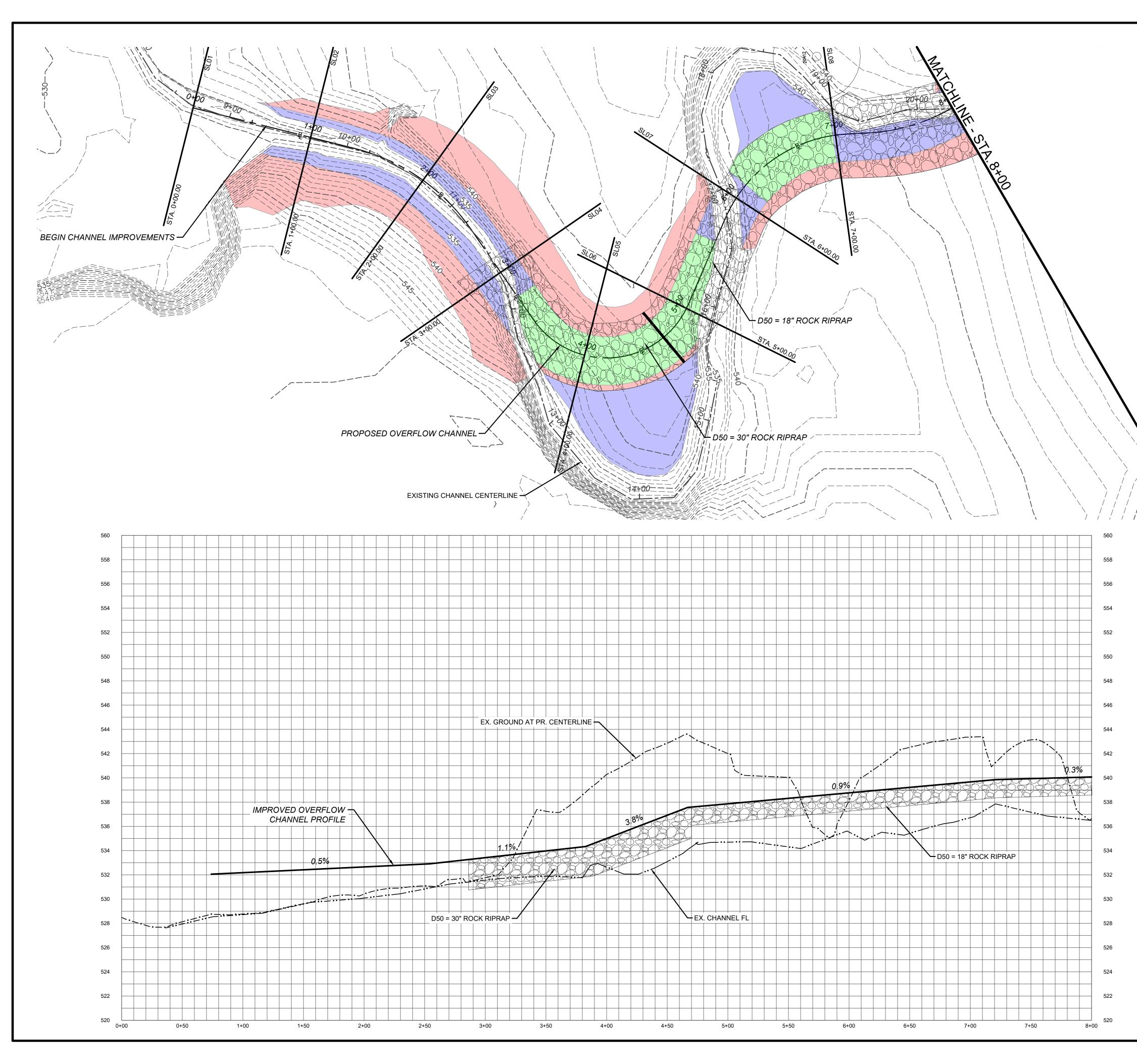
100-Year LOS Hybrid Channel Alternative

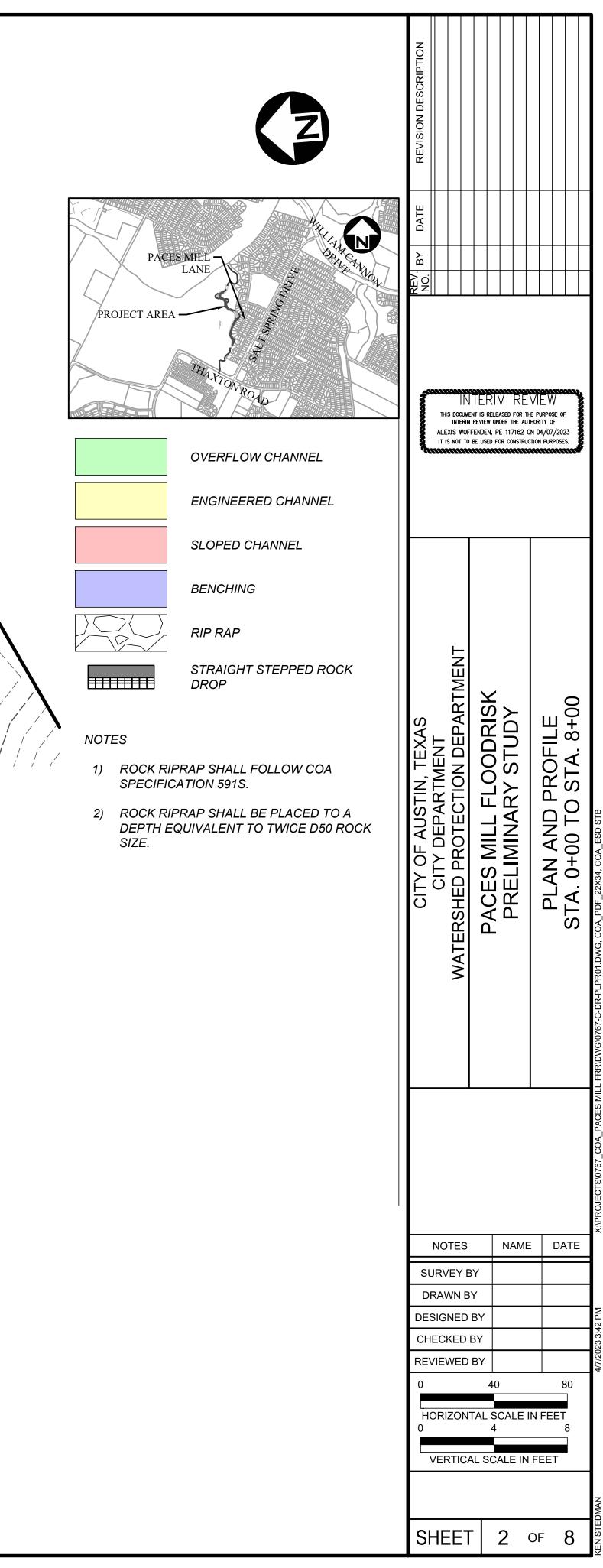
Proposed Easement for Containment of Expected Increase in100-Year Inundation Boundary

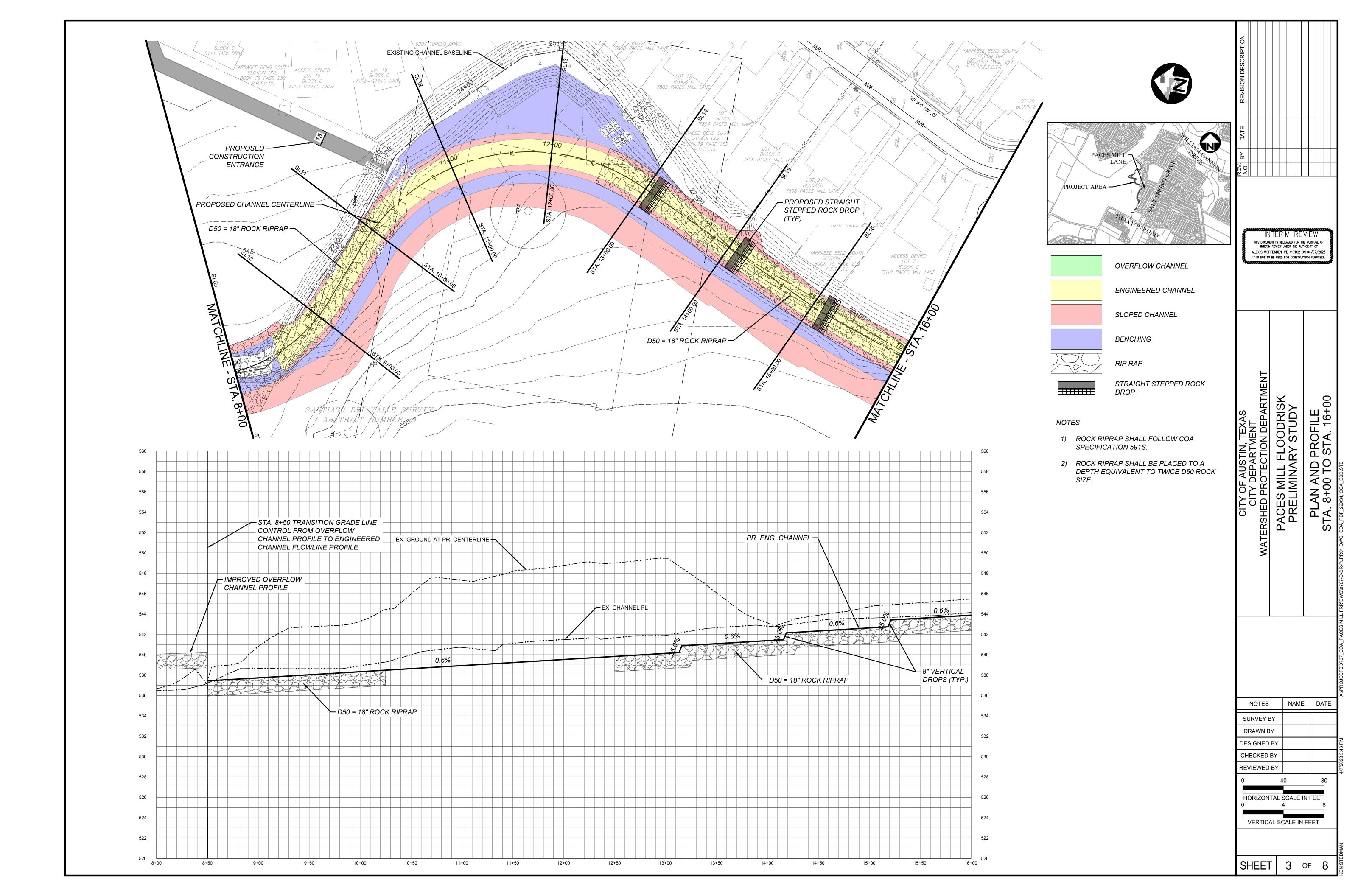
Appendix O: Schematic Design Engineer's Opinion of Construction Cost

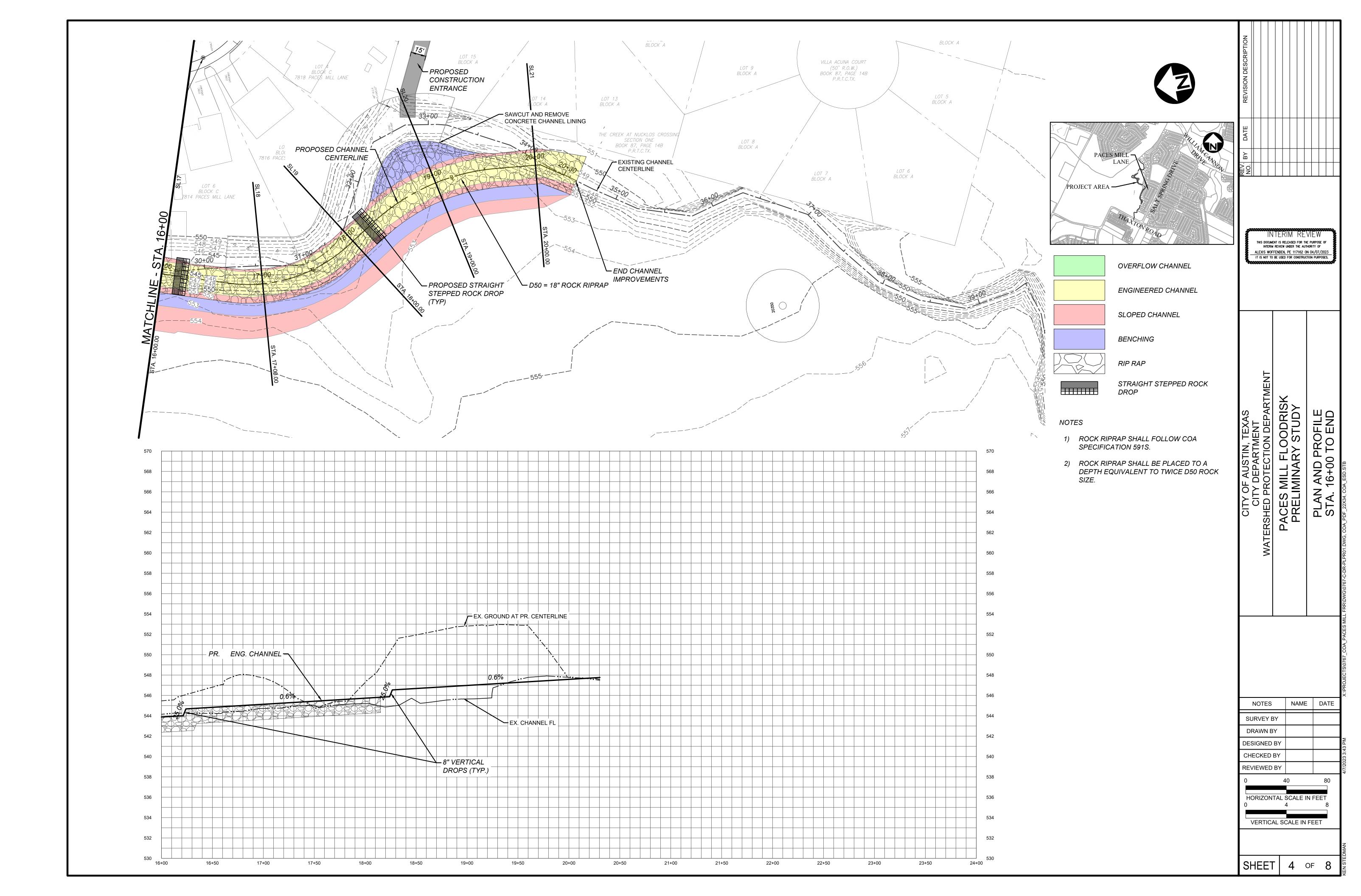
CITY OF AUSTIN PACES MILL FRR ENGINEER'S OPINION OF PROBABLE COST 100 YEAR HYBRID CHANNEL

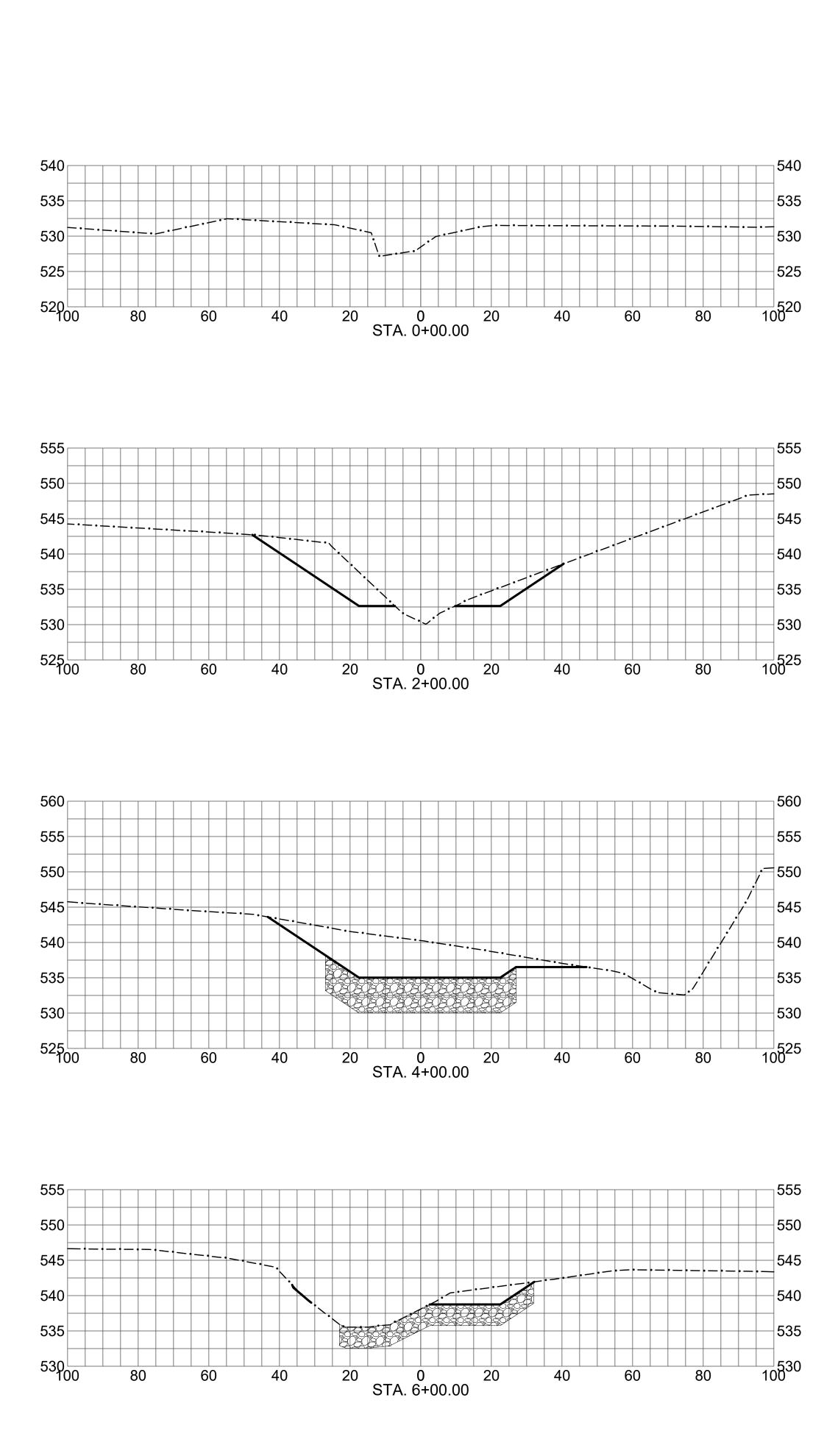

BID ITEM NO.	ITEM DESCRIPTION	UNIT	QTY.	UNIT COST		Т	OTAL COST
102S-C	CLEARING AND GRUBBING	LS			10%		261,170.00
111S-A	EXCAVATION	CY	20400	\$	50.00	\$	1,020,000.00
414S-C	CAST-IN-PLACE PORTLAND CEMENT CONCRETE RETAINING WALL, INCLUDING REINFORCEMENT	CY	0	\$	1,500.00	\$	-
509S-1	TRENCH EXCAVATION SAFETY PROTECTIVE SYSTEMS, (ALL DEPTHS)	LF	0	\$	10.00	\$	-
559S-10X8	PRECAST CONCRETE BOX CULVERTS, 10 FT X 12 FT	LF	0	\$	2,000.00	\$	-
591S-A	DRY ROCK RIPRAP, D50 = 18 IN	SY	4500	\$	130.00	\$	585,000.00
591S-A	DRY ROCK RIPRAP, D50 = 30 IN	SY	700	\$	291.00	\$	203,700.00
591S-F	CONCRETE RIPRAP, 6 IN	SY	0	\$	300.00	\$	-
604S-E	NATIVE SEEDING FOR EROSION CONTROL, BROADCAST SEEDING	SY	16800	\$	1.50	\$	25,200.00
605S	SOIL RETENTION BLANKET CLASS 2; TYPE H, COMPLETE AND IN PLACE	SY	16800	\$	10.00	\$	168,000.00
608S-1	PLANTING TYPE _, SIZE IN INCHES _	EA	0			\$	-
608S-2	IRRIGATION SYSTEM	LS	1	\$	15,000.00	\$	15,000.00
609S-A	TOPSOIL AND SEEDBED PREPARATION	SY	16800	\$	15.00	\$	252,000.00
609S-C	NATIVE SEEDING	SY	16800	\$	5.00	\$	84,000.00
610S-A	PROTECTIVE FENCING TYPE A CHAIN LINK FENCE	LF	4200	\$	4.00	\$	16,800.00
625S	Grade Stabilization Structure	LF	180	\$	400.00	\$	72,000.00
639S	ROCK BERM	LF	200	\$	45.00	\$	9,000.00
641S	STABILIZED CONSTRUCTION ENTRANCE	EA	2	\$	3,500.00	\$	7,000.00
642S	SILT FENCE FOR EROSION CONTROL	LF	4200	\$	10.00	\$	42,000.00
700S-TM	TOTAL MOBILIZATION PAYMENT	LS	1		5%	\$	203,643.50
802S-A	PROJECT SIGN	EA	2	\$	1,000.00	\$	2,000.00
803S-MO	BARRICADES, SIGNS, AND TRAFFIC HANDLING	МО	12	\$	5,000.00	\$	60,000.00
SS1000	COFFER DAM & SITE DEWATERING	LS	1	\$	50,000.00	\$	50,000.00
SP610S	TREE REMOVAL	AC	4		200,000.00	\$	800,000.00
	TREE MITIGATION	AC	4		100,000.00	\$	400.000.00
CONSTRUCTI	CONSTRUCTION SUBTOTAL			Ŧ		,	4,276,513.50
CONTINGENCY (30% OF SUBTOTAL)						\$	1,282,955.00
CONSTRUCTI	CONSTRUCTION COST ESTIMATE					\$	5,559,468.50
	ENGINEERING (15% OF CONSTRUCTION)					\$	833,920.28
TOTAL COST	OF ALTERNATIVE					\$	6,393,388.78

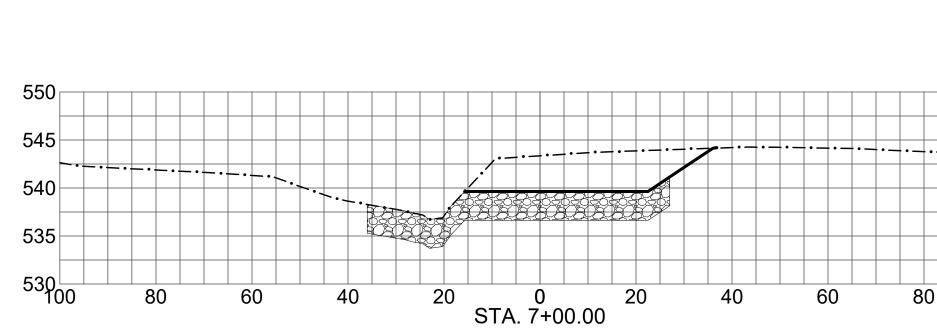

This document is released for interim review under the authority of Alexis Woffenden, P.E., #117162 on March 22, 2023 and is not to be used for other purposes.

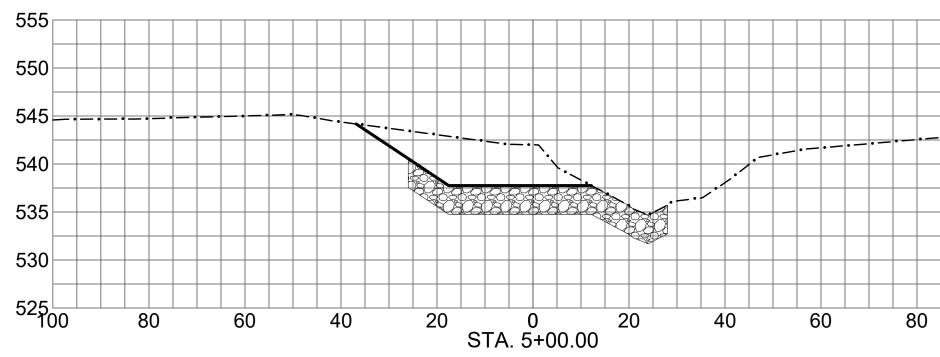


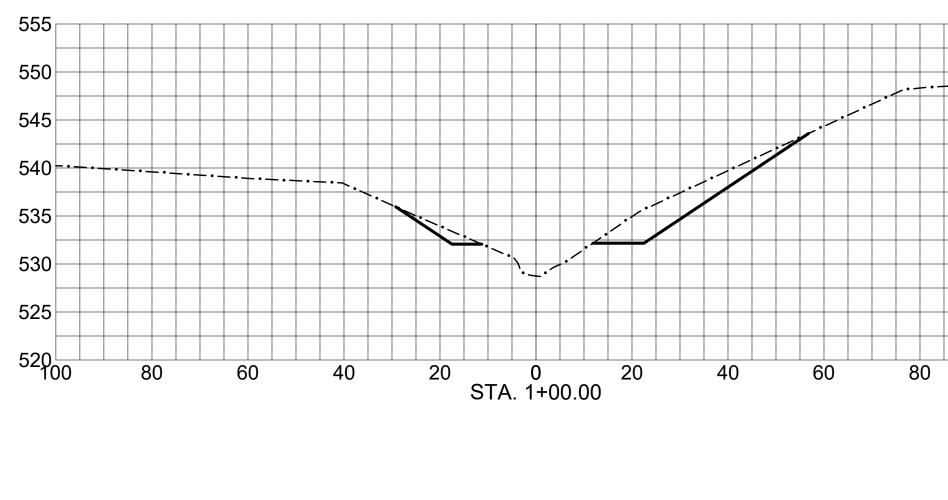

Appendix P: Schematic Design of 100-yr Hybid Channel Improvements

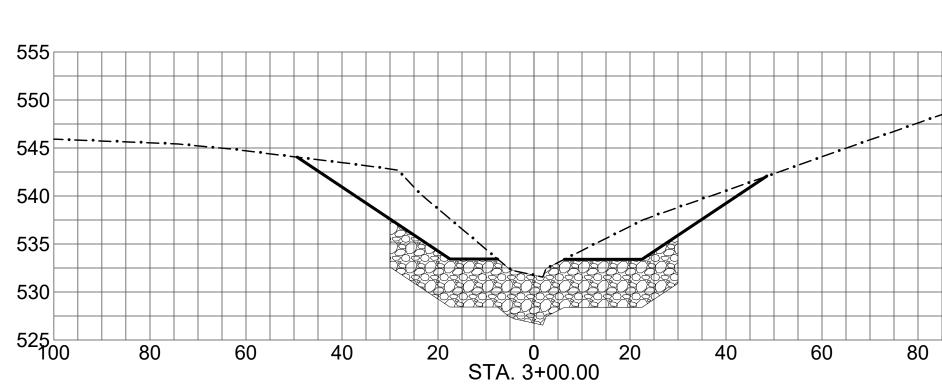


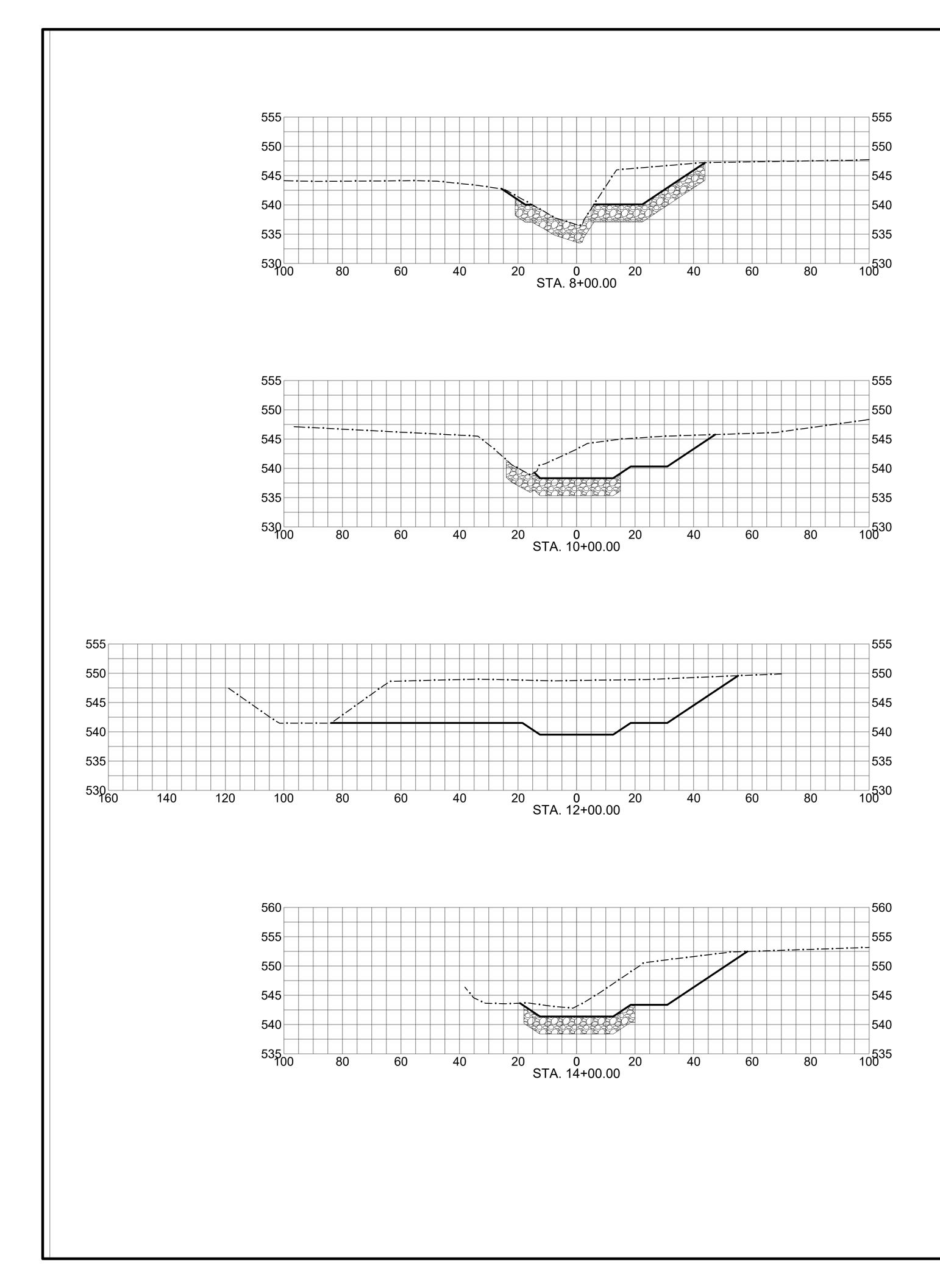


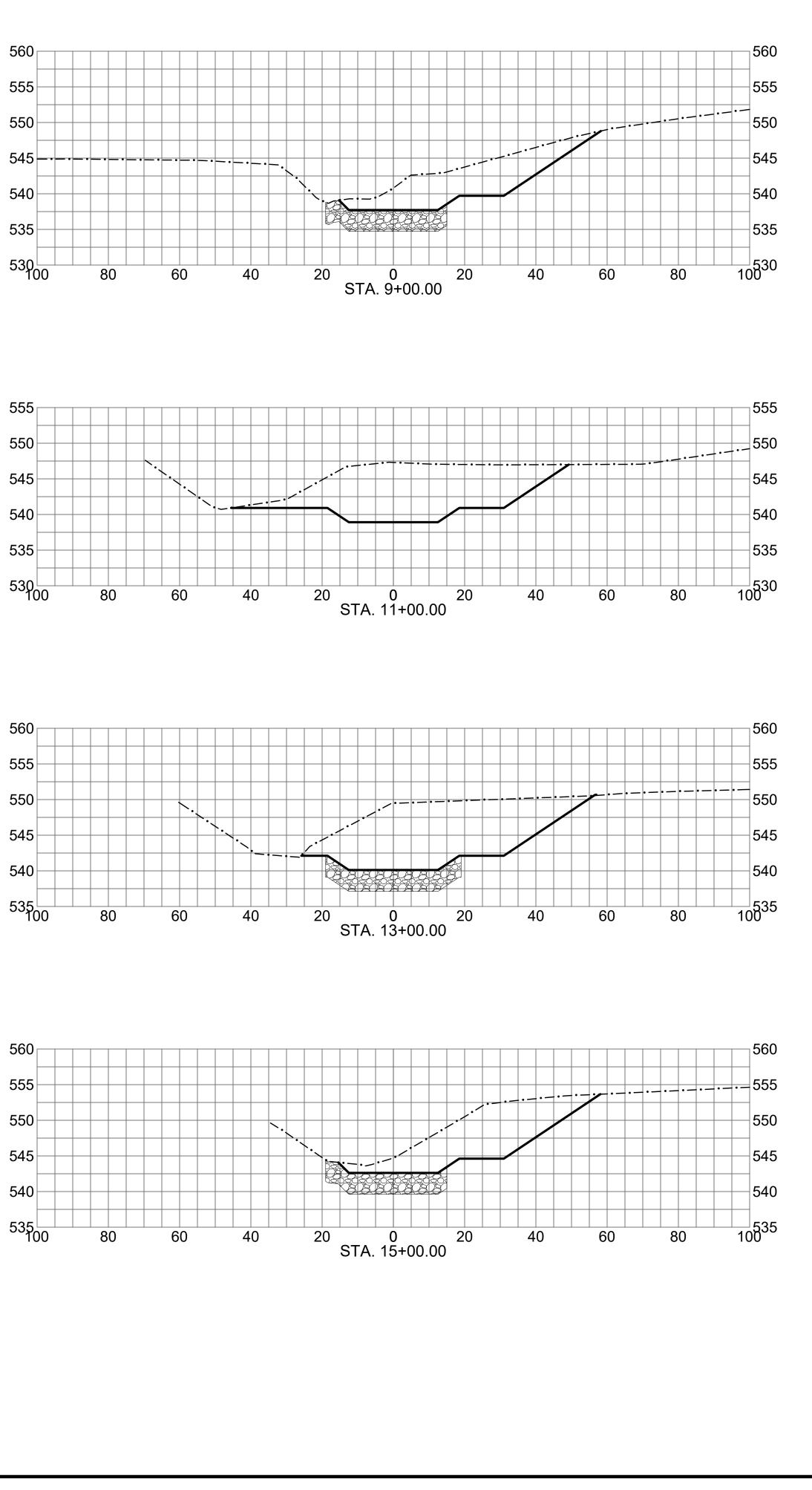


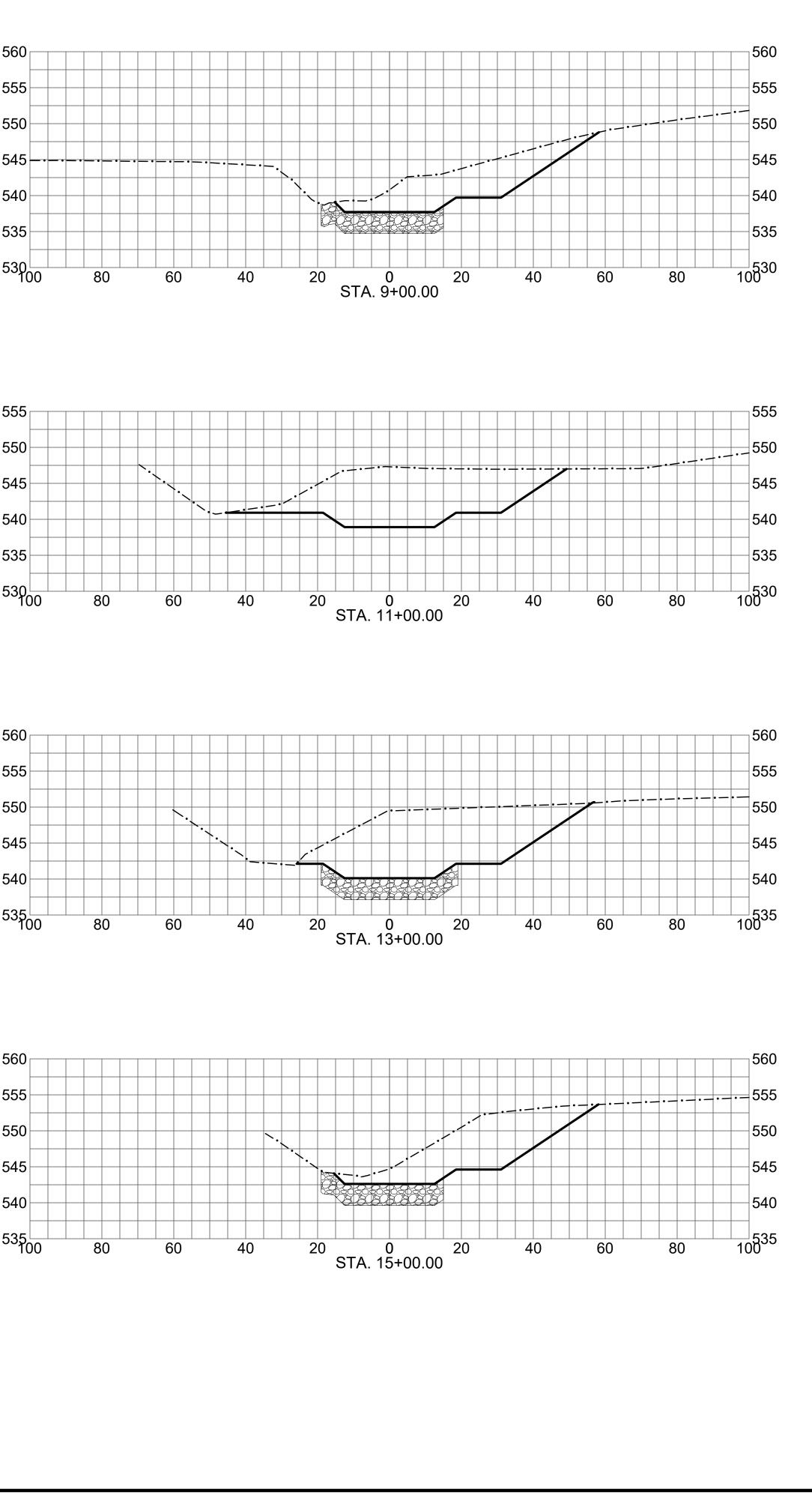


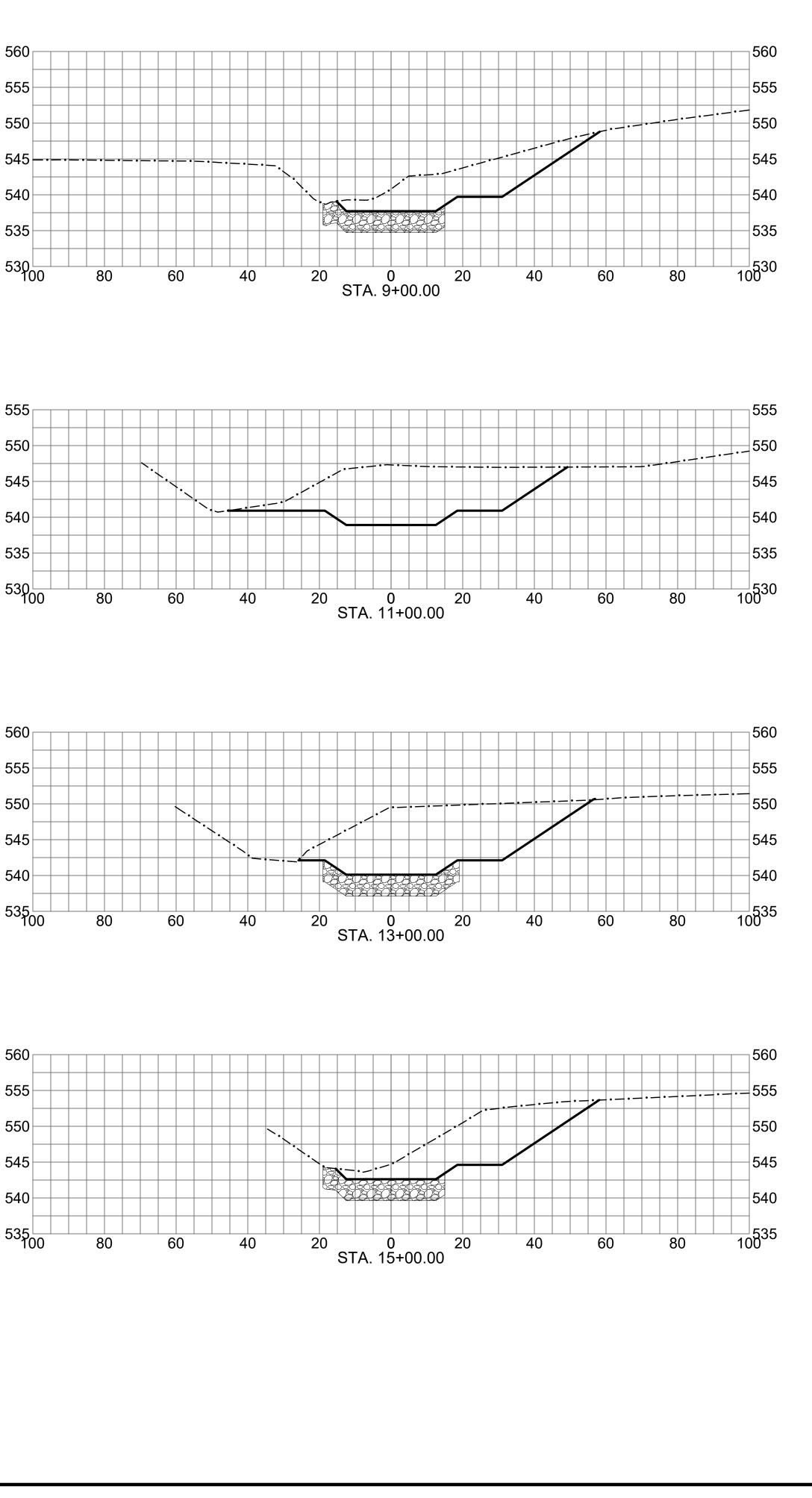


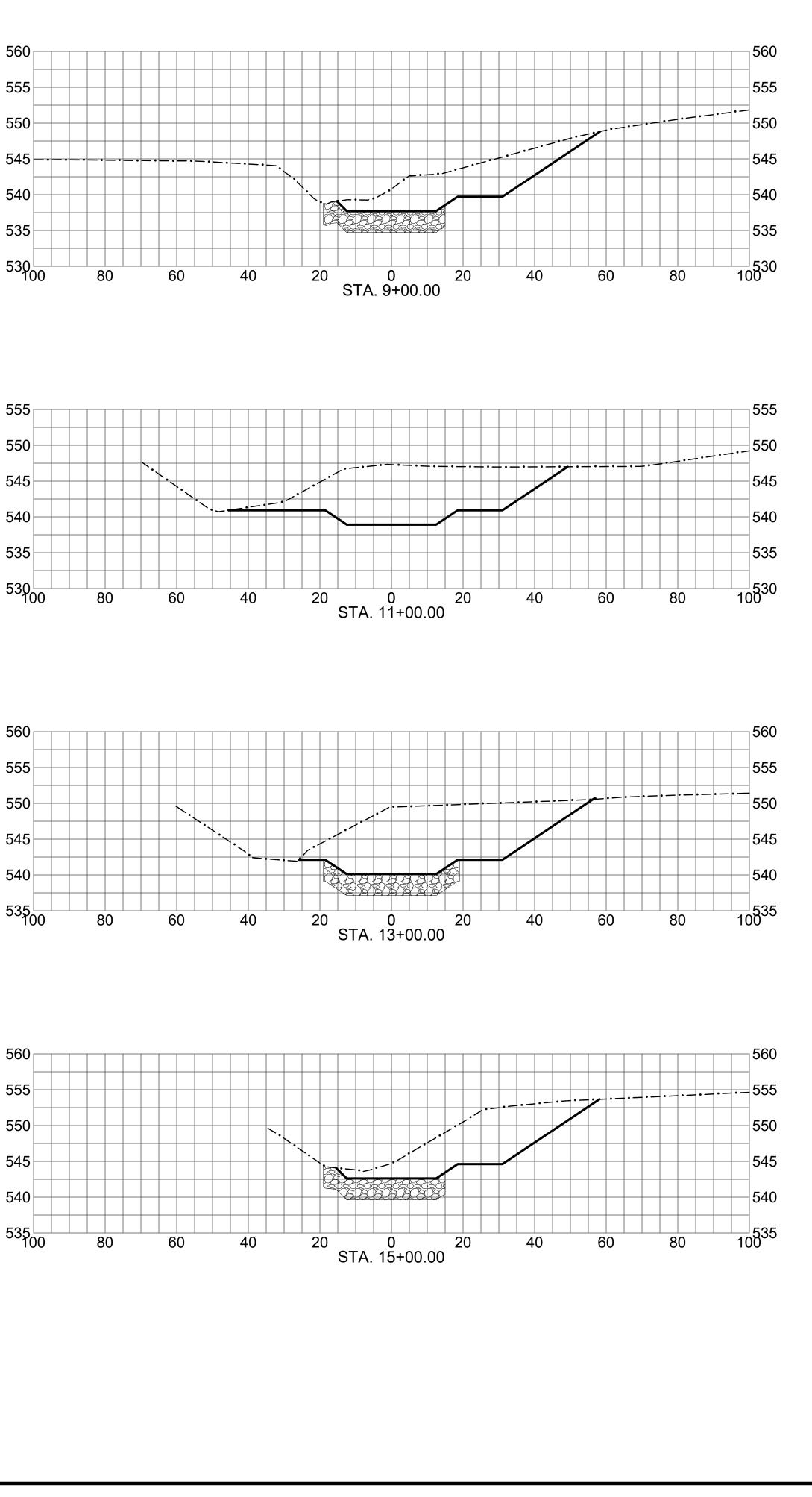


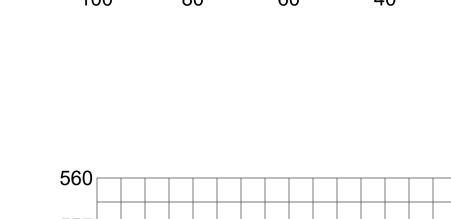


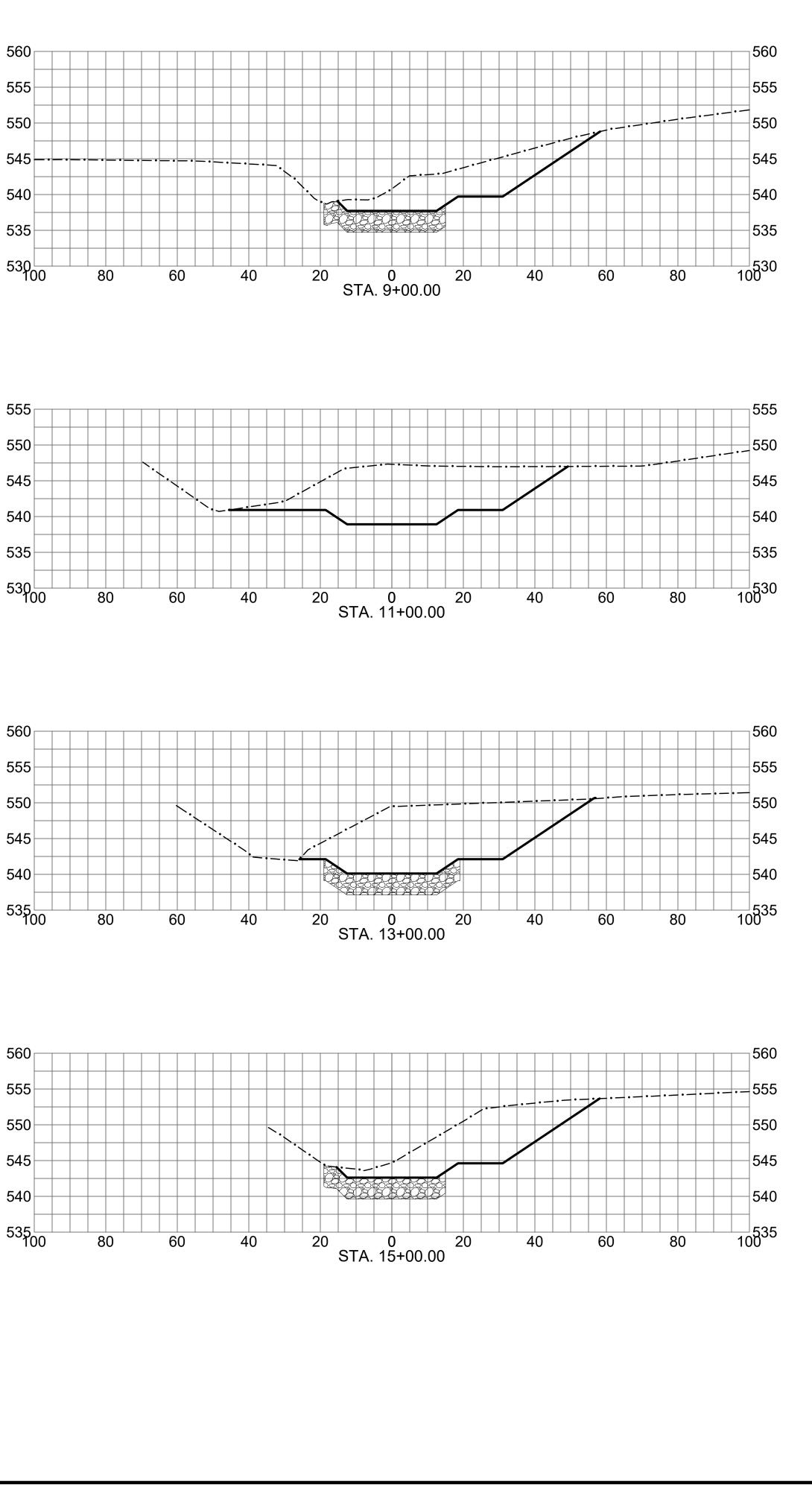


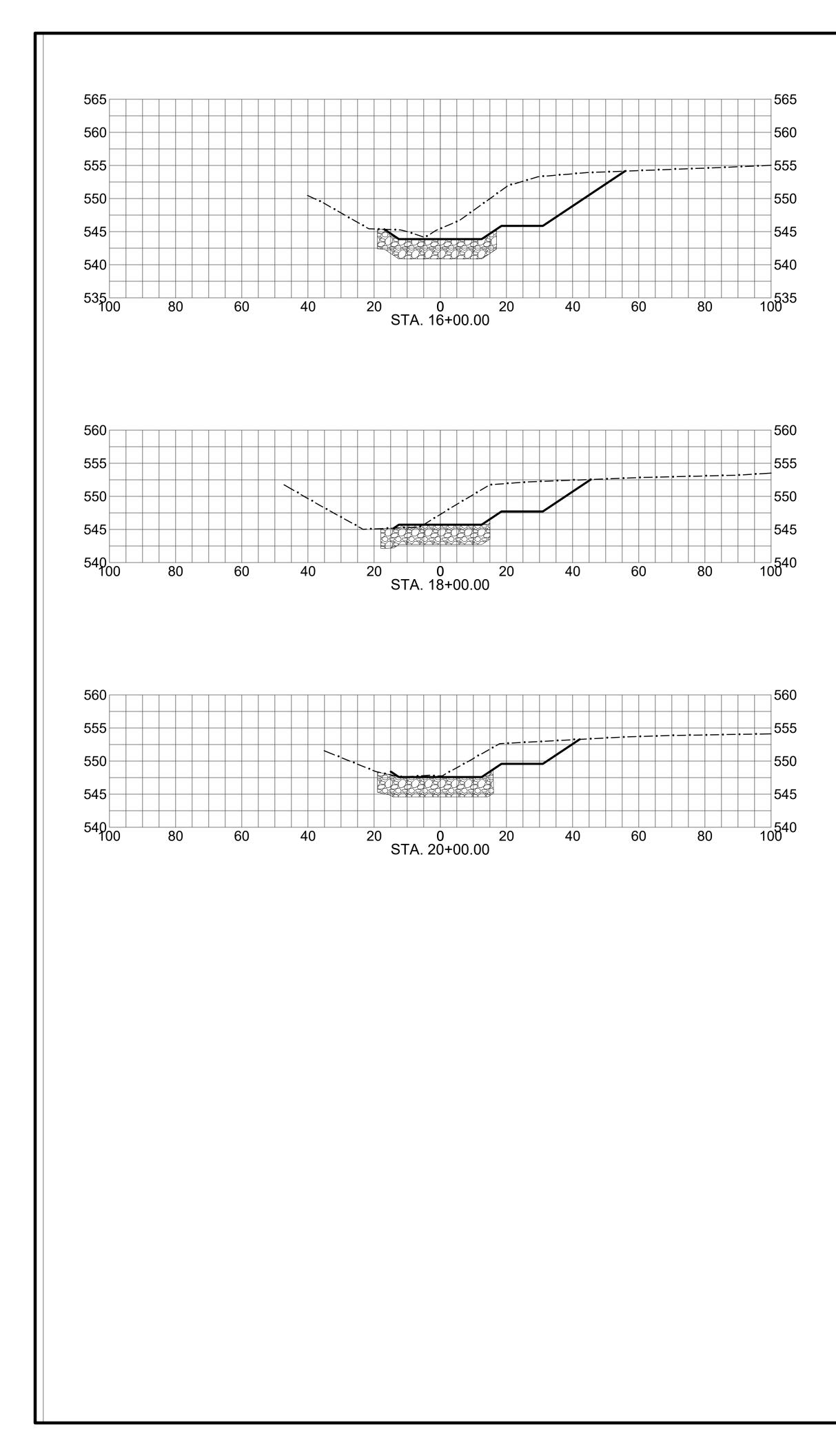


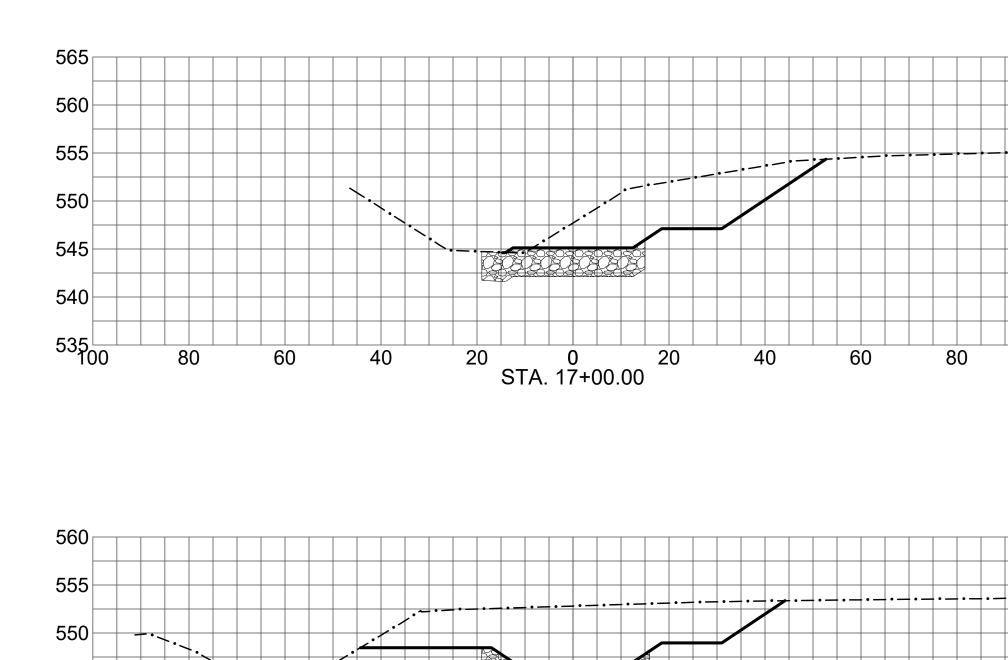


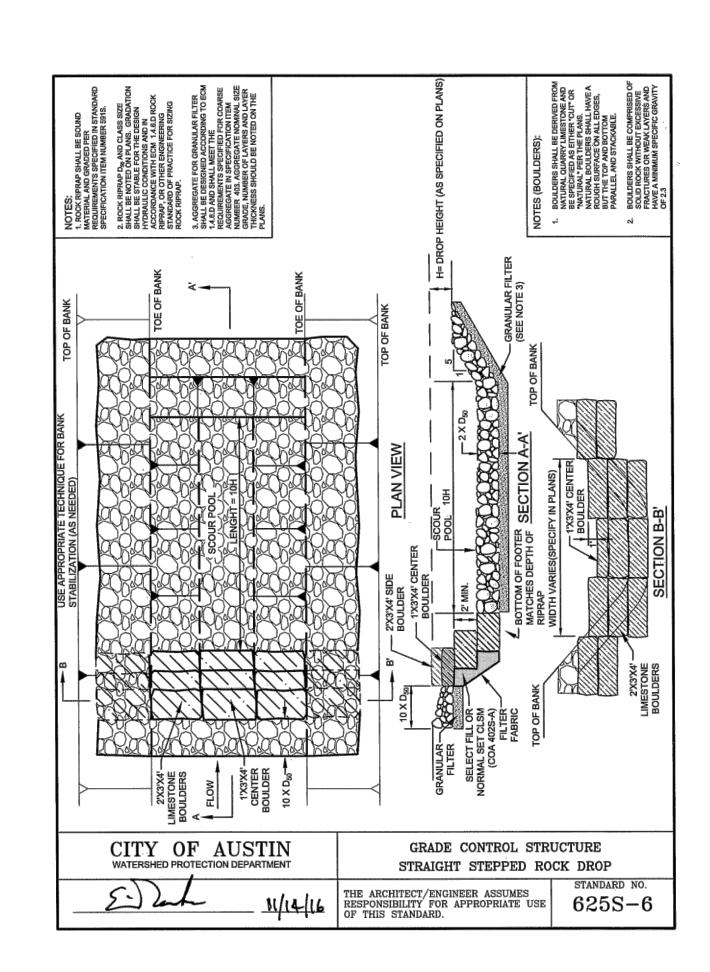

$ \begin{array}{c} 555 \\ 550 \\ 545 \\ 545 \\ 540 \\ 535 \\ 535 \\ 530 \\ 525 \\ \end{array} $	REV. INO DATE REVISION DESCRIPTION NO. N N NO N N <t< th=""></t<>
555 550	INTERIM REVIEW THIS DOCUMENT IS RELEASED FOR THE PURPOSE OF INTERIM REVIEW UNDER THE AUTHORITY OF ALEXIS WOFFENDEN, PE 117162 ON 04/07/2023 IT IS NOT TO BE USED FOR CONSTRUCTION PURPOSES.
550 545 540 535 530 530 525 100 555 550 545 550 545 550 545 550 545 550 545 550 545 550 545 550 545 550 545 545 550 545 545 545 550 545 545 540 545 540 545 540 545 540 545 540 545 540 545 540 545 540 540 535 540 535 540 535 530 535 530 535 530	CITY OF AUSTIN, TEXAS CITY DEPARTMENT MATERSHED PROTECTION DEPARTMENT PACES MILL FLOODRISK PRELIMINARY STUDY CROSS SECTIONS STA. 0+00 TO STA. 7+00
550 545 540 535 0 100 535 0 100 535 0 100 535	NOTES NAME DATE SURVEY BY










REV. BY DATE REVISION DESCRIPTION		
THIS DOCUMEN INTERIM ALEXIS WOFF	TERIM RE nt is released for review under the au <u>"ENDEN, PE 117162</u> be used for constru	THE PURPOSE OF JTHORITY OF ON 04/07/2023
CITY OF AUSTIN, TEXAS CITY DEPARTMENT WATERSHED PROTECTION DEPARTMENT	PACES MILL FLOODRISK PRELIMINARY STUDY	CROSS SECTION STA. 8+00 TO STA. 15+00
0	Y BY 3Y	40 IN FEET 20
SHEET	6	of 8

) 0 STA. 19+00.00

$ \begin{array}{c} 565 \\ 560 \\ 555 \\ 550 \\ 545 \\ 540 \\ 535 \\ 100^{35} \end{array} $	REV. BY DATE REVISION DESCRIPTION NO. BY DATE REVISION DESCRIPTION IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO
560 555 555 550 545	IN TERIM REVIEW His document is released for the purpose of interim review under the authority of <u>ALEXIS WOFFENDEN, PE 117162 ON 04/07/2023</u> It is not to be used for construction purposes.
545 108 108	CITY OF AUSTIN, TEXAS CITY DEPARTMENT MATERSHED PROTECTION DEPARTMENT MATERSHED PROTECTION DEPARTMENT PACES MILL FLOODRISK PRELIMINARY STUDY CROSS SECTION STA. 15+00 TO END STA. 15+00 TO END
	NOTES NAME DATE SURVEY BY DRAWN BY DESIGNED BY DESIGNED BY DESIGNED BY DESIGNED BY DESIGNED BY DESIGNED BY 0 20 40 40 HORIZONTAL SCALE IN FEET DESIGNED BY DESIGNED BY DESIGNED BY 0 20 40 40 40 HORIZONTAL SCALE IN FEET DESIGNED BY DESIGNED BY DESIGNED BY SHEET 7 0F 8

THIS DOCUME INTERIM	REVIEW UNDER TH FENDEN, PE 117	OR THE PURPOSE OF	
CITY OF AUSTIN, TEXAS CITY DEPARTMENT WATERSHED PROTECTION DEPARTMENT	PACES MILL FLOODRISK PRFLIMINARY STLIDY	DETAILS	
0	Y BY BY 20 TAL SCAL 10	ME DA	TE